Glyphosate affects micro‐organisms in rhizospheres of glyphosate‐resistant soybeans

Aims: Glyphosate‐resistant (GR) soybean production increases each year because of the efficacy of glyphosate for weed management. A new or ‘second' generation of GR soybean (GR2) is now commercially available for farmers that is being promoted as higher yielding relative to the previous, ‘first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied microbiology 2011, Vol.110 (1), p.118-127
Hauptverfasser: Zobiole, L.H.S, Kremer, R.J, Oliveira, R.S. Jr, Constantin, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aims: Glyphosate‐resistant (GR) soybean production increases each year because of the efficacy of glyphosate for weed management. A new or ‘second' generation of GR soybean (GR2) is now commercially available for farmers that is being promoted as higher yielding relative to the previous, ‘first generation' (GR1) cultivars. Recent reports show that glyphosate affects the biology and ecology of rhizosphere micro‐organisms in GR soybean that affect yield. The objective of this research was to evaluate the microbiological interactions in the rhizospheres of GR2 and GR1 soybean and the performance of the cultivars with different rates of glyphosate applied at different growth stages. Methods and Results: A greenhouse study was conducted using GR1 and GR2 soybean cultivars grown in a silt loam soil. Glyphosate was applied at V2, V4 and V6 growth stages at three rates. Plants harvested at R1 growth stage had high root colonization by Fusarium spp.; reduced rhizosphere fluorescent pseudomonads, Mn‐reducing bacteria, and indoleacetic acid-producing rhizobacteria; and reduced shoot and root biomass. Conclusions: Glyphosate applied to GR soybean, regardless of cultivar, negatively impacts the complex interactions of microbial groups, biochemical activity and root growth that can have subsequent detrimental effects on plant growth and productivity. Significance and Impact of the Study: The information presented here will be crucial in developing strategies to overcome the potential detrimental effects of glyphosate in GR cropping systems.
ISSN:1364-5072
1365-2672
DOI:10.1111/j.1365-2672.2010.04864.x