A compact difference scheme for the fractional diffusion-wave equation

This article is devoted to the study of high order difference methods for the fractional diffusion-wave equation. The time fractional derivatives are described in the Caputo’s sense. A compact difference scheme is presented and analyzed. It is shown that the difference scheme is unconditionally conv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2010-10, Vol.34 (10), p.2998-3007
Hauptverfasser: Du, R., Cao, W.R., Sun, Z.Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article is devoted to the study of high order difference methods for the fractional diffusion-wave equation. The time fractional derivatives are described in the Caputo’s sense. A compact difference scheme is presented and analyzed. It is shown that the difference scheme is unconditionally convergent and stable in L ∞ -norm. The convergence order is O ( τ 3 - α + h 4 ) . Two numerical examples are also given to demonstrate the theoretical results.
ISSN:0307-904X
DOI:10.1016/j.apm.2010.01.008