Mapping amphibian contact zones and phylogeographical break hotspots across the United States
Identifying congruence in the geographical position of lineage breaks and species range limits across multiple taxa is a focus of the field of comparative phylogeography. These regions are biogeographical hotspots for investigations into the processes driving divergence at multiple phylogenetic leve...
Gespeichert in:
Veröffentlicht in: | Molecular ecology 2010-12, Vol.19 (24), p.5404-5416 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Identifying congruence in the geographical position of lineage breaks and species range limits across multiple taxa is a focus of the field of comparative phylogeography. These regions are biogeographical hotspots for investigations into the processes driving divergence at multiple phylogenetic levels. We used spatially explicit statistical methods to identify these regions for amphibians across the United States. Significant clustering occurred in the Appalachian Mountains and in the general area of Alabama – a region underappreciated as an important amphibian hotspot. When the orders Caudata and Anura were examined separately, spatial clustering was still found in Alabama for both. However, in Caudata the Appalachians and California were also important, and for Anura, the Great Lakes region was highlighted. When species richness was statistically controlled, cluster hotspots shifted out of Alabama and the Appalachians and moved to broader swaths of the Great Lakes region, southwestern United States and California. The exact location of particular suture zones is probably a result of complex interactions between historical and ecological factors including physiography, climate and distance from glacial refugia. These contact zone and phylogeographical break hotspots are ideal arenas in which to test alternative speciation hypotheses and examine the extent of reproductive isolation using novel, integrative approaches combining modern methods in statistical phylogeography, ecological niche modelling and genomics. |
---|---|
ISSN: | 0962-1083 1365-294X |
DOI: | 10.1111/j.1365-294X.2010.04879.x |