Wiring specificity in the direction-selectivity circuit of the retina

The proper connectivity between neurons is essential for the implementation of the algorithms used in neural computations, such as the detection of directed motion by the retina. The analysis of neuronal connectivity is possible with electron microscopy, but technological limitations have impeded th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2011-03, Vol.471 (7337), p.183-188
Hauptverfasser: Briggman, Kevin L, Helmstaedter, Moritz, Denk, Winfried
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The proper connectivity between neurons is essential for the implementation of the algorithms used in neural computations, such as the detection of directed motion by the retina. The analysis of neuronal connectivity is possible with electron microscopy, but technological limitations have impeded the acquisition of high-resolution data on a large enough scale. Here we show, using serial block-face electron microscopy and two-photon calcium imaging, that the dendrites of mouse starburst amacrine cells make highly specific synapses with direction-selective ganglion cells depending on the ganglion cell’s preferred direction. Our findings indicate that a structural (wiring) asymmetry contributes to the computation of direction selectivity. The nature of this asymmetry supports some models of direction selectivity and rules out others. It also puts constraints on the developmental mechanisms behind the formation of synaptic connections. Our study demonstrates how otherwise intractable neurobiological questions can be addressed by combining functional imaging with the analysis of neuronal connectivity using large-scale electron microscopy. Untangling neural nets in the visual system Connectivity forms the basis of functional computations performed by neural circuits, but it is notoriously difficult to follow the complex structural wiring between neurons to the function of individual cells. Now, using a combination of functional imaging and three-dimensional serial electron-microscopic reconstruction at an unprecedented scale, two groups present detailed representations of the connectivity of single cells in the mouse visual system. Davi Bock et al . in Clay Reid's lab investigate connectivity in the primary visual cortex, and find that inhibitory neurons receive input from excitatory cells with widely varying functions, consistent with predictions from recent physiological studies of the mouse cortex. Kevin Briggman, Moritz Helmstaedter and Winfried Denk show that direction-selective ganglion cells receive more synapses from a starburst amacrine cell dendrite if their preferred directions are opposites, suggesting that the directional sensitivity of retinal ganglion cells arises from the asymmetry in their wiring with amacrine cells. To date, various aspects of connectivity have been inferred from electron microscopy (EM) of synaptic contacts, light microscopy of axonal and dendritic arbors, and correlations in activity. However, until now it has not been possib
ISSN:0028-0836
1476-4687
DOI:10.1038/nature09818