Charge-based fractionation of oxyanion-forming metals and metalloids leached from recycled concrete aggregates of different degrees of carbonation: A comparison of laboratory and field leaching tests

The release and charge-based fractionation of As, Cr, Mo, Sb, Se and V were evaluated in leachates generated from recycled concrete aggregates (RCA) in a laboratory and at a field site. The leachates, covering the pH range 8.4–12.6, were generated from non-carbonated, and artificially and naturally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Waste management (Elmsford) 2011-02, Vol.31 (2), p.253-258
Hauptverfasser: Mulugeta, Mesay, Engelsen, Christian J., Wibetoe, Grethe, Lund, Walter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The release and charge-based fractionation of As, Cr, Mo, Sb, Se and V were evaluated in leachates generated from recycled concrete aggregates (RCA) in a laboratory and at a field site. The leachates, covering the pH range 8.4–12.6, were generated from non-carbonated, and artificially and naturally carbonated crushed concrete samples. Comparison between the release of the elements from the non-carbonated and carbonated samples indicated higher solubility of the elements from the latter. The laboratory leaching tests also revealed that the solubility of the elements is low at the “natural pH” of the non-carbonated materials and show enhancement when the pH is decreased. The charge-based fractionation of the elements was determined by ion-exchange solid phase extraction (SPE); it was found that all the target elements predominantly existed as anions in both the laboratory and field leachates. The high fraction of the anionic species of the elements in the leachates from the carbonated RCA materials verified the enhanced solubility of the oxyanionic species of the elements as a result of carbonation. The concentrations of the elements in the leachates and SPE effluents were determined by inductively coupled plasma mass spectrometry (ICP–MS).
ISSN:0956-053X
1879-2456
DOI:10.1016/j.wasman.2010.05.003