On nature of bimodal release of noble gases during pyrolysis of the meteoritic nanodiamonds
Analysis of noble gas proportions and their release kinetics during stepped pyrolysis and oxidation of meteoritic nanodiamonds, as well as their core-shell structure led to the following conclusions: (1) Noble gases of HL component with anomalous isotopic composition were presumably formed prior to...
Gespeichert in:
Veröffentlicht in: | Geochemistry international 2010-12, Vol.48 (12), p.1177-1184 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Analysis of noble gas proportions and their release kinetics during stepped pyrolysis and oxidation of meteoritic nanodiamonds, as well as their core-shell structure led to the following conclusions: (1) Noble gases of HL component with anomalous isotopic composition were presumably formed prior to implantation in the nanodiamonds owing to mixing of nucleosynthetic products of
p
- and
r
- process associated with explosion of type-II supernova with noble gases having “normal” isotopic composition; (2) isotopically normal P3 noble gases in the nanodiamonds grains are confined to the nondiamond (for instance, graphite-like) phase in the surface layer. The “layer” structure of nanodiamonds grains resulted from heating up to 800–900°C. Observed increase in contents of P3 noble gases with increasing grain sizes of meteoritic nanodiamonds is caused by the dependence of the degree of graphitization of the superfical layer at given temperature on the grain size and surface defect density; (3) bimodal release of noble gases during pyrolysis of the meteoritic nanodiamonds from weakly metamorphosed meteorites was caused by P3 and HL components, which are comparable in abundance but sharply differ in their release temperature. |
---|---|
ISSN: | 0016-7029 1556-1968 |
DOI: | 10.1134/S0016702910120037 |