Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles
Neurotransmitter release at synapses between nerve cells is mediated by calcium-triggered exocytotic fusion of synaptic vesicles. Before fusion, vesicles dock at the presynaptic release site where they mature to a fusion-competent state,. Here we identify Munc13-1, a brain-specific presynaptic phorb...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1999-07, Vol.400 (6743), p.457-461 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neurotransmitter release at synapses between nerve cells is mediated by calcium-triggered exocytotic fusion of synaptic vesicles. Before fusion, vesicles dock at the presynaptic release site where they mature to a fusion-competent state,. Here we identify Munc13-1, a brain-specific presynaptic phorbol ester receptor,, as an essential protein for synaptic vesicle maturation. We show that glutamatergic hippocampal neurons from mice lacking Munc13-1 form ultrastructurally normal synapses whose synaptic-vesicle cycle is arrested at the maturation step. Transmitter release from mutant synapses cannot be triggered by action potentials, calcium-ionophores or hypertonic sucrose solution. In contrast, release evoked by α-latrotoxin is indistinguishable from wild-type controls, indicating that the toxin can bypass Munc13-1-mediated vesicle maturation. A small subpopulation of synapses of any given glutamatergic neuron as well as all synapses of GABA (γ-aminobutyric acid)-containing neurons are unaffected by Munc13-1 loss, demonstrating the existence of multiple and transmitter-specific synaptic vesicle maturation processes in synapses. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/22768 |