Generation of Vulcanian activity and long-period seismicity at Volcan de Colima, Mexico

During the current episode, which commenced in 1998, activity at Volcan de Colima has been characterised by daily Vulcanian events, several effusive phases and a number of larger dome destroying explosions. The upper edifice comprises of an intricate array of fractures and within this system, variat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of volcanology and geothermal research 2010-12, Vol.198 (1-2), p.45-56
Hauptverfasser: VARLEY, Nick, ARAMBULA-MENDOZA, Raúl, REYES-DAVILA, Gabriel, SANDERSON, Richard, STEVENSON, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During the current episode, which commenced in 1998, activity at Volcan de Colima has been characterised by daily Vulcanian events, several effusive phases and a number of larger dome destroying explosions. The upper edifice comprises of an intricate array of fractures and within this system, variations in the magma ascent rate, rheology and volatile-contents complete a complexity which controls the style of activity. Subtle variations in one or more of these factors can trigger a transition. A model is presented of the Vulcanian explosion mechanism, which is reflected in the associated seismicity: first the breaching of an impermeable cap and the initial gas loss after the rupture (low-frequency signal), followed by fragmentation (high-frequency signal). In 2005, a series of larger Vulcanian explosions associated with ascending magma, represent the period of activity with the highest production rate in recent years. Pyroclastic flows were produced by column collapse, with the absence of vesicularity amongst the products pointing to a deep source of gas driving the eruption. The appearance of swarms of long-period (LP) events associated with the explosions provided a great opportunity for analysis and an insight into the processes within the fracture system, which control the eruptive style. Cross-correlation of the LP waveforms produced a series of ten families which reappeared in subsequent swarms suggesting a consistent source. Brittle fracture associated with the enhanced stain-rate found along the conduit margins is suggested as the source of this seismicity. This is supported by a linear relationship between log event rate and relative amplitude of the events within each swarm. An analysis of the temporal distribution of LP events revealed a variation in conditions between swarms. For some swarms, the conditions within the fracture system meant that a conflict between the processes associated with magma ascent was revealed, whilst for others, it was a situation of failure and backup, which can be interpreted as the failing and activation of different fractures within the upper edifice.
ISSN:0377-0273
1872-6097
DOI:10.1016/j.jvolgeores.2010.08.009