Molecular memory by reversible translocation of calcium/calmodulin-dependent protein kinase II

Synaptic plasticity is thought to be a key process for learning, memory and other cognitive functions of the nervous system. The initial events of plasticity require the conversion of brief electrical signals into alterations of the biochemical properties of synapses that last for much longer than t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2000-09, Vol.3 (9), p.881-886
Hauptverfasser: Shen, K., Teruel, M. N., Connor, J. H., Shenolikar, S., Meyer, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synaptic plasticity is thought to be a key process for learning, memory and other cognitive functions of the nervous system. The initial events of plasticity require the conversion of brief electrical signals into alterations of the biochemical properties of synapses that last for much longer than the initial stimuli. Here we show that a regulator of synaptic plasticity, calcium/calmodulin-dependent protein kinase IIα (CaMKII), sequentially translocates to postsynaptic sites, undergoes autophosphorylation and gets trapped for several minutes until its dissociation is induced by secondary autophosphorylation and phosphatase 1 action. Once dissociated, CaMKII shows facilitated translocation for several minutes. This suggests that trapping of CaMKII by its targets and priming of CaMKII translocation may function as biochemical memory mechanisms that change the signaling capacity of synapses.
ISSN:1097-6256
1546-1726
DOI:10.1038/78783