Upper mantle electrical resistivity structure beneath the central Mariana subduction system

This paper reports on a magnetotelluric (MT) survey across the central Mariana subduction system, providing a comprehensive electrical resistivity image of the upper mantle to address issues of mantle dynamics in the mantle wedge and beneath the slow back‐arc spreading ridge. After calculation of MT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2010-09, Vol.11 (9), p.np-n/a
Hauptverfasser: Matsuno, Tetsuo, Seama, Nobukazu, Evans, Rob L., Chave, Alan D., Baba, Kiyoshi, White, Antony, Goto, Tada-nori, Heinson, Graham, Boren, Goran, Yoneda, Asami, Utada, Hisashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper reports on a magnetotelluric (MT) survey across the central Mariana subduction system, providing a comprehensive electrical resistivity image of the upper mantle to address issues of mantle dynamics in the mantle wedge and beneath the slow back‐arc spreading ridge. After calculation of MT response functions and their correction for topographic distortion, two‐dimensional electrical resistivity structures were generated using an inversion algorithm with a smoothness constraint and with additional restrictions imposed by the subducting slab. The resultant isotropic electrical resistivity structure contains several key features. There is an uppermost resistive layer with a thickness of up to 150 km beneath the Pacific Ocean Basin, 80–100 km beneath the Mariana Trough, and 60 km beneath the Parece Vela Basin along with a conductive mantle beneath the resistive layer. A resistive region down to 60 km depth and a conductive region at greater depth are inferred beneath the volcanic arc in the mantle wedge. There is no evidence for a conductive feature beneath the back‐arc spreading center. Sensitivity tests were applied to these features through inversion of synthetic data. The uppermost resistive layer is the cool, dry residual from the plate accretion process. Its thickness beneath the Pacific Ocean Basin is controlled mainly by temperature, whereas the roughly constant thickness beneath the Mariana Trough and beneath the Parece Vela Basin regardless of seafloor age is controlled by composition. The conductive mantle beneath the uppermost resistive layer requires hydration of olivine and/or melting of the mantle. The resistive region beneath the volcanic arc down to 60 km suggests that fluids such as melt or free water are not well connected or are highly three‐dimensional and of limited size. In contrast, the conductive region beneath the volcanic arc below 60 km depth reflects melting and hydration driven by water release from the subducting slab. The resistive region beneath the back‐arc spreading center can be explained by dry mantle with typical temperatures, suggesting that any melt present is either poorly connected or distributed discontinuously along the strike of the ridge. Evidence for electrical anisotropy in the central Mariana upper mantle is weak.
ISSN:1525-2027
1525-2027
DOI:10.1029/2010GC003101