Functional characterization of pectin methylesterase inhibitor (PMEI) in wheat

Pectin, one of the main components of plant cell wall, is deesterified by the pectin methylesterase (PME). PME activity is regulated by inhibitor proteins known as the pectin methylesterase inhibitor (PMEI), which plays a key role in wounding, osmotic stress, senescence and seed development. However...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes & Genetic Systems 2010, Vol.85(2), pp.97-106
Hauptverfasser: Hong, Min Jeong, Kim, Dae Yeon, Lee, Tong Geon, Jeon, Woong Bae, Seo, Yong Weon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pectin, one of the main components of plant cell wall, is deesterified by the pectin methylesterase (PME). PME activity is regulated by inhibitor proteins known as the pectin methylesterase inhibitor (PMEI), which plays a key role in wounding, osmotic stress, senescence and seed development. However, the role of PMEI in many plant species still remains to be elucidated, especially in wheat. To facilitate the expression analysis of the TaPMEI gene, RT-PCR was performed using leaf, stem and root tissues that were treated with exogeneous application of phytohormones and abiotic stresses. High transcription was detected in salicylic acid (SA) and hydrogen peroxide treatments. To elucidate the subcellular localization of the TaPMEI protein, the TaPMEI:GFP fusion construct was transformed into onion epidermal cells by particle bombardment. The fluorescence signal was exclusively detected in the cell wall. Using an enzyme assay, we confirmed that PME was completely inhibited by TaPMEI. These results indicated that TaPMEI was involved in inhibition of pectin methylesterification and may play a role in the plant defense mechanism via cell wall fortification.
ISSN:1341-7568
1880-5779
1880-5779
DOI:10.1266/ggs.85.97