Split Bull’s Eye Shaped Aluminum Antenna for Plasmon-Enhanced Nanometer Scale Germanium Photodetector

Bull’s eye antennas are capable of efficiently collecting and concentrating optical signals into an ultrasmall area, offering an excellent solution to break the bottleneck between speed and photoresponse in subwavelength photodetectors. Here, we exploit the idea of split bull’s eye antenna for a nan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2011-03, Vol.11 (3), p.1289-1293
Hauptverfasser: Ren, Fang-Fang, Ang, Kah-Wee, Ye, Jiandong, Yu, Mingbin, Lo, Guo-Qiang, Kwong, Dim-Lee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bull’s eye antennas are capable of efficiently collecting and concentrating optical signals into an ultrasmall area, offering an excellent solution to break the bottleneck between speed and photoresponse in subwavelength photodetectors. Here, we exploit the idea of split bull’s eye antenna for a nanometer germanium photodetector operating at a standard communication wavelength of 1310 nm. The nontraditional plasmonic metal aluminum has been implemented in the resonant antenna structure fabricated by standard complementary metal−oxide−semiconductor (CMOS) processing. A significant enhancement in photoresponse could be achieved over the conventional bull’s eye scheme due to an increased optical near-field in the active region. Moreover, with this novel antenna design the effective grating area could be significantly reduced without sacrificing device performance. This work paves the way for the future development of low-cost, high-density, and high-speed CMOS-compatible germanium-based optoelectronic devices.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl104338z