Automation of legal sensemaking in e-discovery
Retrieval of relevant unstructured information from the ever-increasing textual communications of individuals and businesses has become a major barrier to effective litigation/defense, mergers/acquisitions, and regulatory compliance. Such e-discovery requires simultaneously high precision with high...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence and law 2010-12, Vol.18 (4), p.431-457 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Retrieval of relevant unstructured information from the ever-increasing textual communications of individuals and businesses has become a major barrier to effective litigation/defense, mergers/acquisitions, and regulatory compliance. Such e-discovery requires simultaneously high precision with high recall (high-P/R) and is therefore a prototype for many legal reasoning tasks. The requisite exhaustive information retrieval (IR) system must employ very different techniques than those applicable in the hyper-precise, consumer search task where insignificant recall is the accepted norm. We apply Russell, et al.’s cognitive task analysis of sensemaking by intelligence analysts to develop a semi-autonomous system that achieves high IR accuracy of F1 ≥ 0.8 compared to F1 |
---|---|
ISSN: | 0924-8463 1572-8382 |
DOI: | 10.1007/s10506-010-9100-1 |