Applying user feedback and query destination learning method to multiple communities - an Evaluation
This paper proposes a novel Peer-to-Peer Information Retrieval (P2PIR) method using user feedback and query-destination-learning. The method uses positive feedback information effectively for getting documents relevant to a query by giving higher score to them. The method also utilizes negative feed...
Gespeichert in:
Veröffentlicht in: | Transactions of the Japanese Society for Artificial Intelligence 2011, Vol.26(1), pp.97-106 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a novel Peer-to-Peer Information Retrieval (P2PIR) method using user feedback and query-destination-learning. The method uses positive feedback information effectively for getting documents relevant to a query by giving higher score to them. The method also utilizes negative feedback information actively so that other agents can filter it out with itself. Using query-destination-learning, the method can not only accumulate relevant information from all the member agents in a community, but also reduce communication loads by caching queries and their sender-responder agent addresses in the community. Experiments were carried out on both single and multiple communities constructed with multi-agent framework Kodama. The experimental results illustrated that the proposed method effectively increased retrieval accuracy. |
---|---|
ISSN: | 1346-0714 1346-8030 1346-8030 |
DOI: | 10.1527/tjsai.26.97 |