Liquid water flooding process in proton exchange membrane fuel cell cathode with straight parallel channels and porous layer

Liquid water management plays a significant role in proton exchange membrane fuel cell (PEMFC) performance, especially when the PEMFC is operating with high current density. Therefore, understanding of liquid water behavior and flooding process is a critical challenge that must be addressed. To over...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2011-02, Vol.196 (4), p.1776-1794
Hauptverfasser: Wang, Xichen, Zhou, Biao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Liquid water management plays a significant role in proton exchange membrane fuel cell (PEMFC) performance, especially when the PEMFC is operating with high current density. Therefore, understanding of liquid water behavior and flooding process is a critical challenge that must be addressed. To overcome PEMFC durability problems, a liquid water flooding process is studied in the cathode side of a PEMFC with straight parallel channels and a porous layer using FLUENT ® v6.3.26 software with a volume-of-fluid (VOF) algorithm and user-defined-function (UDF). The general process of liquid water flooding within this type of PEMFC cathode is investigated by analyzing the behavior of liquid water in porous layer and gas flow channels. Two important phenomena, the “first channel phenomenon” and the “last channel phenomenon”, and their effects on the flow distribution along different parallel channels are discussed.
ISSN:0378-7753
1873-2755
DOI:10.1016/j.jpowsour.2010.09.092