Void closure prediction in cold rolling using finite element analysis and neural network

Cold rolling is used to eliminate void defects in cast materials thus improving the material performance during service. A comprehensive procedure is developed using finite element analysis and neural network to predict the degree of void closure. A three-dimensional nonlinear dynamic finite element...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials processing technology 2011-02, Vol.211 (2), p.245-255
Hauptverfasser: Chen, J., Chandrashekhara, K., Mahimkar, C., Lekakh, S.N., Richards, V.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cold rolling is used to eliminate void defects in cast materials thus improving the material performance during service. A comprehensive procedure is developed using finite element analysis and neural network to predict the degree of void closure. A three-dimensional nonlinear dynamic finite element model was used to study the mechanism of void deformation. Experiments were conducted to investigate void closure during the cold flat rolling process. Experimental results are compared to the three-dimensional finite element predictions to validate the model. The void reduction predictions from finite element analysis are in good agreement with experimental findings. Plastic strain, principal stress distribution around the void and void reduction ratio are presented for various case studies. As finite element simulation is time-consuming, a back-propagation neural network model is also developed to predict void closure behavior. Based on the correlation analysis, the reduction in sheet thickness, the dimension of the void and the size of the rollers were selected as the inputs for the neural network. The neural network model was trained based on results obtained from finite element analysis for various simulation cases. The trained neural network model provides an accurate and efficient procedure to predict void closure behavior in cold rolling.
ISSN:0924-0136
DOI:10.1016/j.jmatprotec.2010.09.016