Water transport characteristics in the gas diffusion media of proton exchange membrane fuel cell – Role of the microporous layer

Water transport through the gas diffusion media of a proton exchange membrane fuel cell (PEMFC) was investigated with a focus on the role of the microporous layer (MPL) coated on the cathode gas diffusion layer (GDL). The capillary pressure of the MPL and GDL, which plays a significant role in water...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2011-02, Vol.196 (4), p.1847-1854
Hauptverfasser: Nishiyama, Enju, Murahashi, Toshiaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Water transport through the gas diffusion media of a proton exchange membrane fuel cell (PEMFC) was investigated with a focus on the role of the microporous layer (MPL) coated on the cathode gas diffusion layer (GDL). The capillary pressure of the MPL and GDL, which plays a significant role in water transport, is derived as a function of liquid saturation using a pore size distribution (PSD) model. PSD functions are derived with parameters that are determined by fitting to the measured total PSD data. Computed relations between capillary pressure and liquid saturation for a GDL and a double-layered GDL (GDL + MPL) show good agreement with the experimental data and proposed empirical functions. To investigate the role of the MPL, the relationship between the water withdrawal pressure and liquid saturation are derived for a double-layered GDL. Water transport rates and cell voltages were obtained for various feed gas humidity using a two-dimensional cell model, and are compared with the experimental results. The calculated results for the net drag with application of the capillary pressure derived from the PSD model show good agreement with the experimental values. Furthermore, the results show that the effect of the MPL on the cell output voltage is significant in the range of high humidity operation.
ISSN:0378-7753
1873-2755
DOI:10.1016/j.jpowsour.2010.09.055