An experimental and numerical study on the face milling of Ti–6Al–4V alloy: Tool performance and surface integrity

This paper is concerned with the experimental and numerical study of face milling of Ti–6Al–4 V titanium alloy. Machining is carried out by uncoated carbide cutters in the presence of an abundant supply of coolant. Experimental analysis is conducted by focusing on the measurement of specific cutting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials processing technology 2011-02, Vol.211 (2), p.294-304
Hauptverfasser: Rao, Balkrishna, Dandekar, Chinmaya R., Shin, Yung C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 304
container_issue 2
container_start_page 294
container_title Journal of materials processing technology
container_volume 211
creator Rao, Balkrishna
Dandekar, Chinmaya R.
Shin, Yung C.
description This paper is concerned with the experimental and numerical study of face milling of Ti–6Al–4 V titanium alloy. Machining is carried out by uncoated carbide cutters in the presence of an abundant supply of coolant. Experimental analysis is conducted by focusing on the measurement of specific cutting energy, surface integrity and tool performance. The experimental analysis is supplemented by simulations from a 3D finite element model (FEM) of face milling simulation where needed. A tool wear model parameterized from FEM predictions of the tool–chip interface temperature, contact stress and chip velocity is presented. Tool wear patterns are described in terms of various cutting conditions and the influence of tool wear on surface integrity is investigated. Tool wear predictions based on the 3D FEM simulation show good agreement with experimental tool wear measurements. The highest cutting speed realized for the cutting tool material is 182.9 m/min (600 sfpm). Good surface integrity in terms of favorable residual stress and surface finish is achieved under the machining conditions used with limited tool wear. Residual stresses imparted to the machined surface are shown to be compressive.
doi_str_mv 10.1016/j.jmatprotec.2010.10.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855718855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013610003031</els_id><sourcerecordid>855718855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-38365005e0173328cf1e2bc3c56047e58aadeb39e43451bafabb95e454e814d83</originalsourceid><addsrcrecordid>eNqFkDtOAzEQhrcAiRC4gzuqBHttbxy6EPGSItEEWsvrnQ2OvHawvRHpuAM35CQ4CRIlzYzm8f-a-YoCETwmmFTX6_G6U2kTfAI9LvGhPca4PCkGeFqyESa0OivOY1xjTCZYiEGxnTkEHxsIpgOXlEXKNcj1XW7oXMXUNzvkHUpvgFqlAXXGWuNWyLdoab4_v6qZzZG9ImWt392gpfcWZb_Wh065LNgbxj4cxMYlWAWTdhfFaatshMvfPCxe7u-W88fR4vnhaT5bjDQjVRpRQSuOMYd8LqWl0C2BstZU8wqzCXChVAM1nQKjjJNataqupxwYZyAIawQdFldH3wzlvYeYZGeiBmuVA99HKTifEJFj3hTHTR18jAFauclMVNhJguWerlzLP7pyT3c_yXSz9PYohfzJ1kCQURvIvzcmgE6y8eZ_kx-f4Y2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855718855</pqid></control><display><type>article</type><title>An experimental and numerical study on the face milling of Ti–6Al–4V alloy: Tool performance and surface integrity</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Rao, Balkrishna ; Dandekar, Chinmaya R. ; Shin, Yung C.</creator><creatorcontrib>Rao, Balkrishna ; Dandekar, Chinmaya R. ; Shin, Yung C.</creatorcontrib><description>This paper is concerned with the experimental and numerical study of face milling of Ti–6Al–4 V titanium alloy. Machining is carried out by uncoated carbide cutters in the presence of an abundant supply of coolant. Experimental analysis is conducted by focusing on the measurement of specific cutting energy, surface integrity and tool performance. The experimental analysis is supplemented by simulations from a 3D finite element model (FEM) of face milling simulation where needed. A tool wear model parameterized from FEM predictions of the tool–chip interface temperature, contact stress and chip velocity is presented. Tool wear patterns are described in terms of various cutting conditions and the influence of tool wear on surface integrity is investigated. Tool wear predictions based on the 3D FEM simulation show good agreement with experimental tool wear measurements. The highest cutting speed realized for the cutting tool material is 182.9 m/min (600 sfpm). Good surface integrity in terms of favorable residual stress and surface finish is achieved under the machining conditions used with limited tool wear. Residual stresses imparted to the machined surface are shown to be compressive.</description><identifier>ISSN: 0924-0136</identifier><identifier>DOI: 10.1016/j.jmatprotec.2010.10.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer simulation ; Face milling ; Finite element analysis ; Finite element method ; Integrity ; Mathematical models ; Surface integrity ; Three dimensional ; Titanium ; Titanium base alloys ; Tool wear</subject><ispartof>Journal of materials processing technology, 2011-02, Vol.211 (2), p.294-304</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-38365005e0173328cf1e2bc3c56047e58aadeb39e43451bafabb95e454e814d83</citedby><cites>FETCH-LOGICAL-c416t-38365005e0173328cf1e2bc3c56047e58aadeb39e43451bafabb95e454e814d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmatprotec.2010.10.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Rao, Balkrishna</creatorcontrib><creatorcontrib>Dandekar, Chinmaya R.</creatorcontrib><creatorcontrib>Shin, Yung C.</creatorcontrib><title>An experimental and numerical study on the face milling of Ti–6Al–4V alloy: Tool performance and surface integrity</title><title>Journal of materials processing technology</title><description>This paper is concerned with the experimental and numerical study of face milling of Ti–6Al–4 V titanium alloy. Machining is carried out by uncoated carbide cutters in the presence of an abundant supply of coolant. Experimental analysis is conducted by focusing on the measurement of specific cutting energy, surface integrity and tool performance. The experimental analysis is supplemented by simulations from a 3D finite element model (FEM) of face milling simulation where needed. A tool wear model parameterized from FEM predictions of the tool–chip interface temperature, contact stress and chip velocity is presented. Tool wear patterns are described in terms of various cutting conditions and the influence of tool wear on surface integrity is investigated. Tool wear predictions based on the 3D FEM simulation show good agreement with experimental tool wear measurements. The highest cutting speed realized for the cutting tool material is 182.9 m/min (600 sfpm). Good surface integrity in terms of favorable residual stress and surface finish is achieved under the machining conditions used with limited tool wear. Residual stresses imparted to the machined surface are shown to be compressive.</description><subject>Computer simulation</subject><subject>Face milling</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Integrity</subject><subject>Mathematical models</subject><subject>Surface integrity</subject><subject>Three dimensional</subject><subject>Titanium</subject><subject>Titanium base alloys</subject><subject>Tool wear</subject><issn>0924-0136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkDtOAzEQhrcAiRC4gzuqBHttbxy6EPGSItEEWsvrnQ2OvHawvRHpuAM35CQ4CRIlzYzm8f-a-YoCETwmmFTX6_G6U2kTfAI9LvGhPca4PCkGeFqyESa0OivOY1xjTCZYiEGxnTkEHxsIpgOXlEXKNcj1XW7oXMXUNzvkHUpvgFqlAXXGWuNWyLdoab4_v6qZzZG9ImWt392gpfcWZb_Wh065LNgbxj4cxMYlWAWTdhfFaatshMvfPCxe7u-W88fR4vnhaT5bjDQjVRpRQSuOMYd8LqWl0C2BstZU8wqzCXChVAM1nQKjjJNataqupxwYZyAIawQdFldH3wzlvYeYZGeiBmuVA99HKTifEJFj3hTHTR18jAFauclMVNhJguWerlzLP7pyT3c_yXSz9PYohfzJ1kCQURvIvzcmgE6y8eZ_kx-f4Y2g</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Rao, Balkrishna</creator><creator>Dandekar, Chinmaya R.</creator><creator>Shin, Yung C.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110201</creationdate><title>An experimental and numerical study on the face milling of Ti–6Al–4V alloy: Tool performance and surface integrity</title><author>Rao, Balkrishna ; Dandekar, Chinmaya R. ; Shin, Yung C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-38365005e0173328cf1e2bc3c56047e58aadeb39e43451bafabb95e454e814d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computer simulation</topic><topic>Face milling</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Integrity</topic><topic>Mathematical models</topic><topic>Surface integrity</topic><topic>Three dimensional</topic><topic>Titanium</topic><topic>Titanium base alloys</topic><topic>Tool wear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, Balkrishna</creatorcontrib><creatorcontrib>Dandekar, Chinmaya R.</creatorcontrib><creatorcontrib>Shin, Yung C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, Balkrishna</au><au>Dandekar, Chinmaya R.</au><au>Shin, Yung C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental and numerical study on the face milling of Ti–6Al–4V alloy: Tool performance and surface integrity</atitle><jtitle>Journal of materials processing technology</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>211</volume><issue>2</issue><spage>294</spage><epage>304</epage><pages>294-304</pages><issn>0924-0136</issn><abstract>This paper is concerned with the experimental and numerical study of face milling of Ti–6Al–4 V titanium alloy. Machining is carried out by uncoated carbide cutters in the presence of an abundant supply of coolant. Experimental analysis is conducted by focusing on the measurement of specific cutting energy, surface integrity and tool performance. The experimental analysis is supplemented by simulations from a 3D finite element model (FEM) of face milling simulation where needed. A tool wear model parameterized from FEM predictions of the tool–chip interface temperature, contact stress and chip velocity is presented. Tool wear patterns are described in terms of various cutting conditions and the influence of tool wear on surface integrity is investigated. Tool wear predictions based on the 3D FEM simulation show good agreement with experimental tool wear measurements. The highest cutting speed realized for the cutting tool material is 182.9 m/min (600 sfpm). Good surface integrity in terms of favorable residual stress and surface finish is achieved under the machining conditions used with limited tool wear. Residual stresses imparted to the machined surface are shown to be compressive.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jmatprotec.2010.10.002</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-0136
ispartof Journal of materials processing technology, 2011-02, Vol.211 (2), p.294-304
issn 0924-0136
language eng
recordid cdi_proquest_miscellaneous_855718855
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Computer simulation
Face milling
Finite element analysis
Finite element method
Integrity
Mathematical models
Surface integrity
Three dimensional
Titanium
Titanium base alloys
Tool wear
title An experimental and numerical study on the face milling of Ti–6Al–4V alloy: Tool performance and surface integrity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20and%20numerical%20study%20on%20the%20face%20milling%20of%20Ti%E2%80%936Al%E2%80%934V%20alloy:%20Tool%20performance%20and%20surface%20integrity&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Rao,%20Balkrishna&rft.date=2011-02-01&rft.volume=211&rft.issue=2&rft.spage=294&rft.epage=304&rft.pages=294-304&rft.issn=0924-0136&rft_id=info:doi/10.1016/j.jmatprotec.2010.10.002&rft_dat=%3Cproquest_cross%3E855718855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855718855&rft_id=info:pmid/&rft_els_id=S0924013610003031&rfr_iscdi=true