An experimental and numerical study on the face milling of Ti–6Al–4V alloy: Tool performance and surface integrity

This paper is concerned with the experimental and numerical study of face milling of Ti–6Al–4 V titanium alloy. Machining is carried out by uncoated carbide cutters in the presence of an abundant supply of coolant. Experimental analysis is conducted by focusing on the measurement of specific cutting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials processing technology 2011-02, Vol.211 (2), p.294-304
Hauptverfasser: Rao, Balkrishna, Dandekar, Chinmaya R., Shin, Yung C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the experimental and numerical study of face milling of Ti–6Al–4 V titanium alloy. Machining is carried out by uncoated carbide cutters in the presence of an abundant supply of coolant. Experimental analysis is conducted by focusing on the measurement of specific cutting energy, surface integrity and tool performance. The experimental analysis is supplemented by simulations from a 3D finite element model (FEM) of face milling simulation where needed. A tool wear model parameterized from FEM predictions of the tool–chip interface temperature, contact stress and chip velocity is presented. Tool wear patterns are described in terms of various cutting conditions and the influence of tool wear on surface integrity is investigated. Tool wear predictions based on the 3D FEM simulation show good agreement with experimental tool wear measurements. The highest cutting speed realized for the cutting tool material is 182.9 m/min (600 sfpm). Good surface integrity in terms of favorable residual stress and surface finish is achieved under the machining conditions used with limited tool wear. Residual stresses imparted to the machined surface are shown to be compressive.
ISSN:0924-0136
DOI:10.1016/j.jmatprotec.2010.10.002