Parallel probabilistic model checking on general purpose graphics processors

We present algorithms for parallel probabilistic model checking on general purpose graphic processing units (GPGPUs). Our improvements target the numerical components of the traditional sequential algorithms. In particular, we capitalize on the fact that in most of them operations like matrix–vector...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal on software tools for technology transfer 2011, Vol.13 (1), p.21-35
Hauptverfasser: Bošnački, Dragan, Edelkamp, Stefan, Sulewski, Damian, Wijs, Anton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present algorithms for parallel probabilistic model checking on general purpose graphic processing units (GPGPUs). Our improvements target the numerical components of the traditional sequential algorithms. In particular, we capitalize on the fact that in most of them operations like matrix–vector multiplication and solving systems of linear equations are the main complexity bottlenecks. Since linear algebraic operations can be implemented very efficiently on GPGPUs, the new parallel algorithms show considerable runtime improvements compared to their counterparts on standard architectures. We implemented our parallel algorithms on top of the probabilistic model checker PRISM. The prototype implementation was evaluated on several case studies in which we observed significant speedup over the standard CPU implementation of the tool.
ISSN:1433-2779
1433-2787
DOI:10.1007/s10009-010-0176-4