Anisotropic polyurethane magnetorheological elastomer prepared through in situ polycondensation under a magnetic field

Highly filled polytetramethylene ether glycol (PTMEG)-based polyurethane (PU) magnetorheological elastomers (MREs) with anisotropic structure and good mechanical properties were prepared. The difficulty in dispersion and orientation of iron particles in the PU elastomer was overcome by ball milling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Smart materials and structures 2010-10, Vol.19 (10), p.105007-105007
Hauptverfasser: Wu, Jinkui, Gong, Xinglong, Fan, Yanceng, Xia, Hesheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Highly filled polytetramethylene ether glycol (PTMEG)-based polyurethane (PU) magnetorheological elastomers (MREs) with anisotropic structure and good mechanical properties were prepared. The difficulty in dispersion and orientation of iron particles in the PU elastomer was overcome by ball milling mixing and further in situ one-step polycondensation under a magnetic field. The microstructure and properties of the composite were characterized in detail. Scanning electron microscopy (SEM) showed that a chain-like structure of carbonyl iron was formed in the PU matrix after orientation under a magnetic field of 1.2 T. The aligned chain-like structure of carbonyl iron in PU greatly enhanced the thermal conductivity, the compression properties and the magnetorheological (MR) effect of anisotropic PU MREs compared to that of the isotropic one. When the test frequency is 1 Hz, the maximum absolute and relative MR effect of anisotropic PU MREs with 26 wt% hard segment and 70 wt% carbonyl iron were ~ 1.3 MPa and ~ 21%, respectively.
ISSN:0964-1726
1361-665X
DOI:10.1088/0964-1726/19/10/105007