Modeling Tongue Surface Contours From Cine-MRI Images

This study demonstrated that a simple mechanical model of global tongue movement in parallel sagittal planes could be used to quantify tongue motion during speech. The goal was to represent simply the differences in 2D tongue surface shapes and positions during speech movements and in subphonemic sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of speech, language, and hearing research language, and hearing research, 2001-10, Vol.44 (5), p.1026-1040
Hauptverfasser: Stone, Maureen, Davis, Edward P, Douglas, Andrew S, Aiver, Moriel Ness, Gullapalli, Rao, Levine, William S, Lundberg, Andrew Jon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study demonstrated that a simple mechanical model of global tongue movement in parallel sagittal planes could be used to quantify tongue motion during speech. The goal was to represent simply the differences in 2D tongue surface shapes and positions during speech movements and in subphonemic speech events such as coarticulation and left-to-right asymmetries. The study used tagged Magnetic Resonance Images to capture motion of the tongue during speech. Measurements were made in three sagittal planes (left, midline, right) during movement from consonants (/k/, /s/) to vowels (/i/, /a/, /u/). MR image-sequences were collected during the C-to-V movement. The image-sequence had seven time-phases (frames), each 56 ms in duration. A global model was used to represent the surface motion. The motions were decomposed into translation, rotation, homogeneous stretch, and in-plane shear. The largest C-to-V shape deformation was from /k/ to /a/. It was composed primarily of vertical compression, horizontal expansion, and downward translation. Coarticulatory effects included a trade-off in which tongue shape accommodation was used to reduce the distance traveled between the C and V. Left-to-right motion asymmetries may have increased rate of motion by reducing the amount of mass to be moved.
ISSN:1092-4388
1558-9102
DOI:10.1044/1092-4388(2001/081)