Weighted and robust archetypal analysis

Archetypal analysis represents observations in a multivariate data set as convex combinations of a few extremal points lying on the boundary of the convex hull. Data points which vary from the majority have great influence on the solution; in fact one outlier can break down the archetype solution. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2011-03, Vol.55 (3), p.1215-1225
Hauptverfasser: Eugster, Manuel J.A., Leisch, Friedrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1225
container_issue 3
container_start_page 1215
container_title Computational statistics & data analysis
container_volume 55
creator Eugster, Manuel J.A.
Leisch, Friedrich
description Archetypal analysis represents observations in a multivariate data set as convex combinations of a few extremal points lying on the boundary of the convex hull. Data points which vary from the majority have great influence on the solution; in fact one outlier can break down the archetype solution. The original algorithm is adapted to be a robust M-estimator and an iteratively reweighted least squares fitting algorithm is presented. As a required first step, the weighted archetypal problem is formulated and solved. The algorithm is demonstrated using an artificial example, a real world example and a detailed simulation study.
doi_str_mv 10.1016/j.csda.2010.10.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855713427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947310004056</els_id><sourcerecordid>855713427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-268013db1a14720bb46e8374635b4478c6b8e6186a1d4d58ddd97230d65d44e43</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJg_fgDnnoRT1vzuYngRYpfUPCieAzZ5NWmbHfXZFvov_etWzx6mDwYZua9DCFXjM4YZeXteuZzcDNOf4kZZfqITJjRvNBC8WMyQZEu7qQWp-Qs5zWllEttJuTmE-LXqocwdU2Yprba5n7qkl9Bv-9cjayr9znmC3KydHWGy8M8Jx9Pj-_zl2Lx9vw6f1gUXmrVF7w0lIlQMcek5rSqZAlGaFkKVUlc6MvKQMlM6ViQQZkQwp3mgoZSBSlBinNyM-Z2qf3eQu7tJmYPde0aaLfZGqU0E5JrVPJR6VObc4Kl7VLcuLS3jNqhFLu2Qyl2KGXgsBQ0LUZTgg78nwMABmnj7M4KpxQ-ewQ6GY6IEIgOwThTlnGu7KrfYNz14VqXvauXyTU-5r9YLgx-lQrU3Y86wOp2EZLNPkLjIcQEvrehjf9d_QO5WY7N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855713427</pqid></control><display><type>article</type><title>Weighted and robust archetypal analysis</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Eugster, Manuel J.A. ; Leisch, Friedrich</creator><creatorcontrib>Eugster, Manuel J.A. ; Leisch, Friedrich</creatorcontrib><description>Archetypal analysis represents observations in a multivariate data set as convex combinations of a few extremal points lying on the boundary of the convex hull. Data points which vary from the majority have great influence on the solution; in fact one outlier can break down the archetype solution. The original algorithm is adapted to be a robust M-estimator and an iteratively reweighted least squares fitting algorithm is presented. As a required first step, the weighted archetypal problem is formulated and solved. The algorithm is demonstrated using an artificial example, a real world example and a detailed simulation study.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2010.10.017</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Boundaries ; Breakdown point ; Convex and discrete geometry ; Data points ; Data processing ; Exact sciences and technology ; General topics ; Geometry ; Hulls ; Hulls (structures) ; Iteratively reweighted least squares ; Least squares method ; M-estimator ; Mathematical models ; Mathematics ; Multivariate analysis ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Probability and statistics ; Robust archetypal analysis ; Robust archetypal analysis M-estimator Breakdown point Iteratively reweighted least squares ; Sciences and techniques of general use ; Statistics</subject><ispartof>Computational statistics &amp; data analysis, 2011-03, Vol.55 (3), p.1215-1225</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-268013db1a14720bb46e8374635b4478c6b8e6186a1d4d58ddd97230d65d44e43</citedby><cites>FETCH-LOGICAL-c475t-268013db1a14720bb46e8374635b4478c6b8e6186a1d4d58ddd97230d65d44e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.csda.2010.10.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23818603$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeecsdana/v_3a55_3ay_3a2011_3ai_3a3_3ap_3a1215-1225.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Eugster, Manuel J.A.</creatorcontrib><creatorcontrib>Leisch, Friedrich</creatorcontrib><title>Weighted and robust archetypal analysis</title><title>Computational statistics &amp; data analysis</title><description>Archetypal analysis represents observations in a multivariate data set as convex combinations of a few extremal points lying on the boundary of the convex hull. Data points which vary from the majority have great influence on the solution; in fact one outlier can break down the archetype solution. The original algorithm is adapted to be a robust M-estimator and an iteratively reweighted least squares fitting algorithm is presented. As a required first step, the weighted archetypal problem is formulated and solved. The algorithm is demonstrated using an artificial example, a real world example and a detailed simulation study.</description><subject>Algorithms</subject><subject>Boundaries</subject><subject>Breakdown point</subject><subject>Convex and discrete geometry</subject><subject>Data points</subject><subject>Data processing</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Geometry</subject><subject>Hulls</subject><subject>Hulls (structures)</subject><subject>Iteratively reweighted least squares</subject><subject>Least squares method</subject><subject>M-estimator</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Probability and statistics</subject><subject>Robust archetypal analysis</subject><subject>Robust archetypal analysis M-estimator Breakdown point Iteratively reweighted least squares</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UE1LAzEUDKJg_fgDnnoRT1vzuYngRYpfUPCieAzZ5NWmbHfXZFvov_etWzx6mDwYZua9DCFXjM4YZeXteuZzcDNOf4kZZfqITJjRvNBC8WMyQZEu7qQWp-Qs5zWllEttJuTmE-LXqocwdU2Yprba5n7qkl9Bv-9cjayr9znmC3KydHWGy8M8Jx9Pj-_zl2Lx9vw6f1gUXmrVF7w0lIlQMcek5rSqZAlGaFkKVUlc6MvKQMlM6ViQQZkQwp3mgoZSBSlBinNyM-Z2qf3eQu7tJmYPde0aaLfZGqU0E5JrVPJR6VObc4Kl7VLcuLS3jNqhFLu2Qyl2KGXgsBQ0LUZTgg78nwMABmnj7M4KpxQ-ewQ6GY6IEIgOwThTlnGu7KrfYNz14VqXvauXyTU-5r9YLgx-lQrU3Y86wOp2EZLNPkLjIcQEvrehjf9d_QO5WY7N</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Eugster, Manuel J.A.</creator><creator>Leisch, Friedrich</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110301</creationdate><title>Weighted and robust archetypal analysis</title><author>Eugster, Manuel J.A. ; Leisch, Friedrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-268013db1a14720bb46e8374635b4478c6b8e6186a1d4d58ddd97230d65d44e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Boundaries</topic><topic>Breakdown point</topic><topic>Convex and discrete geometry</topic><topic>Data points</topic><topic>Data processing</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Geometry</topic><topic>Hulls</topic><topic>Hulls (structures)</topic><topic>Iteratively reweighted least squares</topic><topic>Least squares method</topic><topic>M-estimator</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Probability and statistics</topic><topic>Robust archetypal analysis</topic><topic>Robust archetypal analysis M-estimator Breakdown point Iteratively reweighted least squares</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eugster, Manuel J.A.</creatorcontrib><creatorcontrib>Leisch, Friedrich</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eugster, Manuel J.A.</au><au>Leisch, Friedrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted and robust archetypal analysis</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>55</volume><issue>3</issue><spage>1215</spage><epage>1225</epage><pages>1215-1225</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>Archetypal analysis represents observations in a multivariate data set as convex combinations of a few extremal points lying on the boundary of the convex hull. Data points which vary from the majority have great influence on the solution; in fact one outlier can break down the archetype solution. The original algorithm is adapted to be a robust M-estimator and an iteratively reweighted least squares fitting algorithm is presented. As a required first step, the weighted archetypal problem is formulated and solved. The algorithm is demonstrated using an artificial example, a real world example and a detailed simulation study.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2010.10.017</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2011-03, Vol.55 (3), p.1215-1225
issn 0167-9473
1872-7352
language eng
recordid cdi_proquest_miscellaneous_855713427
source RePEc; Elsevier ScienceDirect Journals Complete
subjects Algorithms
Boundaries
Breakdown point
Convex and discrete geometry
Data points
Data processing
Exact sciences and technology
General topics
Geometry
Hulls
Hulls (structures)
Iteratively reweighted least squares
Least squares method
M-estimator
Mathematical models
Mathematics
Multivariate analysis
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Probability and statistics
Robust archetypal analysis
Robust archetypal analysis M-estimator Breakdown point Iteratively reweighted least squares
Sciences and techniques of general use
Statistics
title Weighted and robust archetypal analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A24%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20and%20robust%20archetypal%20analysis&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Eugster,%20Manuel%20J.A.&rft.date=2011-03-01&rft.volume=55&rft.issue=3&rft.spage=1215&rft.epage=1225&rft.pages=1215-1225&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2010.10.017&rft_dat=%3Cproquest_cross%3E855713427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855713427&rft_id=info:pmid/&rft_els_id=S0167947310004056&rfr_iscdi=true