Weighted and robust archetypal analysis
Archetypal analysis represents observations in a multivariate data set as convex combinations of a few extremal points lying on the boundary of the convex hull. Data points which vary from the majority have great influence on the solution; in fact one outlier can break down the archetype solution. T...
Gespeichert in:
Veröffentlicht in: | Computational statistics & data analysis 2011-03, Vol.55 (3), p.1215-1225 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1225 |
---|---|
container_issue | 3 |
container_start_page | 1215 |
container_title | Computational statistics & data analysis |
container_volume | 55 |
creator | Eugster, Manuel J.A. Leisch, Friedrich |
description | Archetypal analysis represents observations in a multivariate data set as convex combinations of a few extremal points lying on the boundary of the convex hull. Data points which vary from the majority have great influence on the solution; in fact one outlier can break down the archetype solution. The original algorithm is adapted to be a robust M-estimator and an iteratively reweighted least squares fitting algorithm is presented. As a required first step, the weighted archetypal problem is formulated and solved. The algorithm is demonstrated using an artificial example, a real world example and a detailed simulation study. |
doi_str_mv | 10.1016/j.csda.2010.10.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855713427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947310004056</els_id><sourcerecordid>855713427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-268013db1a14720bb46e8374635b4478c6b8e6186a1d4d58ddd97230d65d44e43</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJg_fgDnnoRT1vzuYngRYpfUPCieAzZ5NWmbHfXZFvov_etWzx6mDwYZua9DCFXjM4YZeXteuZzcDNOf4kZZfqITJjRvNBC8WMyQZEu7qQWp-Qs5zWllEttJuTmE-LXqocwdU2Yprba5n7qkl9Bv-9cjayr9znmC3KydHWGy8M8Jx9Pj-_zl2Lx9vw6f1gUXmrVF7w0lIlQMcek5rSqZAlGaFkKVUlc6MvKQMlM6ViQQZkQwp3mgoZSBSlBinNyM-Z2qf3eQu7tJmYPde0aaLfZGqU0E5JrVPJR6VObc4Kl7VLcuLS3jNqhFLu2Qyl2KGXgsBQ0LUZTgg78nwMABmnj7M4KpxQ-ewQ6GY6IEIgOwThTlnGu7KrfYNz14VqXvauXyTU-5r9YLgx-lQrU3Y86wOp2EZLNPkLjIcQEvrehjf9d_QO5WY7N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855713427</pqid></control><display><type>article</type><title>Weighted and robust archetypal analysis</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Eugster, Manuel J.A. ; Leisch, Friedrich</creator><creatorcontrib>Eugster, Manuel J.A. ; Leisch, Friedrich</creatorcontrib><description>Archetypal analysis represents observations in a multivariate data set as convex combinations of a few extremal points lying on the boundary of the convex hull. Data points which vary from the majority have great influence on the solution; in fact one outlier can break down the archetype solution. The original algorithm is adapted to be a robust M-estimator and an iteratively reweighted least squares fitting algorithm is presented. As a required first step, the weighted archetypal problem is formulated and solved. The algorithm is demonstrated using an artificial example, a real world example and a detailed simulation study.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2010.10.017</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Boundaries ; Breakdown point ; Convex and discrete geometry ; Data points ; Data processing ; Exact sciences and technology ; General topics ; Geometry ; Hulls ; Hulls (structures) ; Iteratively reweighted least squares ; Least squares method ; M-estimator ; Mathematical models ; Mathematics ; Multivariate analysis ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Probability and statistics ; Robust archetypal analysis ; Robust archetypal analysis M-estimator Breakdown point Iteratively reweighted least squares ; Sciences and techniques of general use ; Statistics</subject><ispartof>Computational statistics & data analysis, 2011-03, Vol.55 (3), p.1215-1225</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-268013db1a14720bb46e8374635b4478c6b8e6186a1d4d58ddd97230d65d44e43</citedby><cites>FETCH-LOGICAL-c475t-268013db1a14720bb46e8374635b4478c6b8e6186a1d4d58ddd97230d65d44e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.csda.2010.10.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23818603$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeecsdana/v_3a55_3ay_3a2011_3ai_3a3_3ap_3a1215-1225.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Eugster, Manuel J.A.</creatorcontrib><creatorcontrib>Leisch, Friedrich</creatorcontrib><title>Weighted and robust archetypal analysis</title><title>Computational statistics & data analysis</title><description>Archetypal analysis represents observations in a multivariate data set as convex combinations of a few extremal points lying on the boundary of the convex hull. Data points which vary from the majority have great influence on the solution; in fact one outlier can break down the archetype solution. The original algorithm is adapted to be a robust M-estimator and an iteratively reweighted least squares fitting algorithm is presented. As a required first step, the weighted archetypal problem is formulated and solved. The algorithm is demonstrated using an artificial example, a real world example and a detailed simulation study.</description><subject>Algorithms</subject><subject>Boundaries</subject><subject>Breakdown point</subject><subject>Convex and discrete geometry</subject><subject>Data points</subject><subject>Data processing</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Geometry</subject><subject>Hulls</subject><subject>Hulls (structures)</subject><subject>Iteratively reweighted least squares</subject><subject>Least squares method</subject><subject>M-estimator</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Probability and statistics</subject><subject>Robust archetypal analysis</subject><subject>Robust archetypal analysis M-estimator Breakdown point Iteratively reweighted least squares</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UE1LAzEUDKJg_fgDnnoRT1vzuYngRYpfUPCieAzZ5NWmbHfXZFvov_etWzx6mDwYZua9DCFXjM4YZeXteuZzcDNOf4kZZfqITJjRvNBC8WMyQZEu7qQWp-Qs5zWllEttJuTmE-LXqocwdU2Yprba5n7qkl9Bv-9cjayr9znmC3KydHWGy8M8Jx9Pj-_zl2Lx9vw6f1gUXmrVF7w0lIlQMcek5rSqZAlGaFkKVUlc6MvKQMlM6ViQQZkQwp3mgoZSBSlBinNyM-Z2qf3eQu7tJmYPde0aaLfZGqU0E5JrVPJR6VObc4Kl7VLcuLS3jNqhFLu2Qyl2KGXgsBQ0LUZTgg78nwMABmnj7M4KpxQ-ewQ6GY6IEIgOwThTlnGu7KrfYNz14VqXvauXyTU-5r9YLgx-lQrU3Y86wOp2EZLNPkLjIcQEvrehjf9d_QO5WY7N</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Eugster, Manuel J.A.</creator><creator>Leisch, Friedrich</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110301</creationdate><title>Weighted and robust archetypal analysis</title><author>Eugster, Manuel J.A. ; Leisch, Friedrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-268013db1a14720bb46e8374635b4478c6b8e6186a1d4d58ddd97230d65d44e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Boundaries</topic><topic>Breakdown point</topic><topic>Convex and discrete geometry</topic><topic>Data points</topic><topic>Data processing</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Geometry</topic><topic>Hulls</topic><topic>Hulls (structures)</topic><topic>Iteratively reweighted least squares</topic><topic>Least squares method</topic><topic>M-estimator</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Probability and statistics</topic><topic>Robust archetypal analysis</topic><topic>Robust archetypal analysis M-estimator Breakdown point Iteratively reweighted least squares</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eugster, Manuel J.A.</creatorcontrib><creatorcontrib>Leisch, Friedrich</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics & data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eugster, Manuel J.A.</au><au>Leisch, Friedrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted and robust archetypal analysis</atitle><jtitle>Computational statistics & data analysis</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>55</volume><issue>3</issue><spage>1215</spage><epage>1225</epage><pages>1215-1225</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>Archetypal analysis represents observations in a multivariate data set as convex combinations of a few extremal points lying on the boundary of the convex hull. Data points which vary from the majority have great influence on the solution; in fact one outlier can break down the archetype solution. The original algorithm is adapted to be a robust M-estimator and an iteratively reweighted least squares fitting algorithm is presented. As a required first step, the weighted archetypal problem is formulated and solved. The algorithm is demonstrated using an artificial example, a real world example and a detailed simulation study.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2010.10.017</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9473 |
ispartof | Computational statistics & data analysis, 2011-03, Vol.55 (3), p.1215-1225 |
issn | 0167-9473 1872-7352 |
language | eng |
recordid | cdi_proquest_miscellaneous_855713427 |
source | RePEc; Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Boundaries Breakdown point Convex and discrete geometry Data points Data processing Exact sciences and technology General topics Geometry Hulls Hulls (structures) Iteratively reweighted least squares Least squares method M-estimator Mathematical models Mathematics Multivariate analysis Numerical analysis Numerical analysis. Scientific computation Numerical methods in probability and statistics Probability and statistics Robust archetypal analysis Robust archetypal analysis M-estimator Breakdown point Iteratively reweighted least squares Sciences and techniques of general use Statistics |
title | Weighted and robust archetypal analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A24%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20and%20robust%20archetypal%20analysis&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Eugster,%20Manuel%20J.A.&rft.date=2011-03-01&rft.volume=55&rft.issue=3&rft.spage=1215&rft.epage=1225&rft.pages=1215-1225&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2010.10.017&rft_dat=%3Cproquest_cross%3E855713427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855713427&rft_id=info:pmid/&rft_els_id=S0167947310004056&rfr_iscdi=true |