Weighted and robust archetypal analysis

Archetypal analysis represents observations in a multivariate data set as convex combinations of a few extremal points lying on the boundary of the convex hull. Data points which vary from the majority have great influence on the solution; in fact one outlier can break down the archetype solution. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2011-03, Vol.55 (3), p.1215-1225
Hauptverfasser: Eugster, Manuel J.A., Leisch, Friedrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Archetypal analysis represents observations in a multivariate data set as convex combinations of a few extremal points lying on the boundary of the convex hull. Data points which vary from the majority have great influence on the solution; in fact one outlier can break down the archetype solution. The original algorithm is adapted to be a robust M-estimator and an iteratively reweighted least squares fitting algorithm is presented. As a required first step, the weighted archetypal problem is formulated and solved. The algorithm is demonstrated using an artificial example, a real world example and a detailed simulation study.
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2010.10.017