A new method for optimal location and sizing of capacitors in distorted distribution networks using PSO algorithm

This paper presents an optimization algorithm for simultaneous improvement of power quality (PQ), optimal placement and sizing of fixed capacitor banks in radial distribution networks in the presence of voltage and current harmonics. The algorithm is based on particle swarm optimization (PSO). The o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Simulation modelling practice and theory 2011-02, Vol.19 (2), p.662-672
Hauptverfasser: Taher, Seyed Abbas, Karimian, Ali, Hasani, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an optimization algorithm for simultaneous improvement of power quality (PQ), optimal placement and sizing of fixed capacitor banks in radial distribution networks in the presence of voltage and current harmonics. The algorithm is based on particle swarm optimization (PSO). The objective function includes the cost of power losses, energy losses and those of the capacitor banks. Constraints include voltage limits, number/size of installed capacitors at each bus, and PQ limits of standard IEEE-519. Using a newly proposed fitness function, a suitable combination of the objective function and relevant constraints is defined as a criterion to select a set of the most suitable buses for capacitor placement. This method is also capable of improving particles in several steps for both converging more readily to the near global solution as well as improving satisfaction of the power quality constraints. Simulation results for the 18-bus and 33-bus IEEE distorted networks using the proposed method are presented and compared with those of previous works. In the 18-bus IEEE distorted network, this indicated an improvement of 3.29% saving compared with other methods. Using the proposed optimization method and simulation performed on the 33-bus IEEE distorted network an annual cost reduction of 31.16% was obtained.
ISSN:1569-190X
1878-1462
DOI:10.1016/j.simpat.2010.09.001