The envelope order spectrum based on generalized demodulation time–frequency analysis and its application to gear fault diagnosis
The generalized demodulation time–frequency analysis is a novel signal processing method, which is particularly suitable for the processing of multi-component amplitude-modulated and frequency-modulated (AM–FM) signals as it can decompose a multi-component signal into a set of single-component signa...
Gespeichert in:
Veröffentlicht in: | Mechanical systems and signal processing 2010-02, Vol.24 (2), p.508-521 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The generalized demodulation time–frequency analysis is a novel signal processing method, which is particularly suitable for the processing of multi-component amplitude-modulated and frequency-modulated (AM–FM) signals as it can decompose a multi-component signal into a set of single-component signals whose instantaneous frequencies own physical meaning. While fault occurs in gear, the vibration signals measured from gearbox would exactly display AM–FM characteristics. Therefore, targeting the modulation feature of gear vibration signal in run-ups and run-downs, a fault diagnosis method in which generalized demodulation time–frequency analysis and envelope order spectrum technique are combined is put forward and applied to the transient analysis of gear vibration signal. Firstly the multi-component vibration signal of gear is decomposed into some mono-component signals using the generalized demodulation time–frequency analysis approach; secondly the envelope analysis is performed to each single-component signal; thirdly each envelope signal is re-sampled in angle domain; finally the spectrum analysis is applied to each re-sampled signal and the corresponding envelope order spectrum can be obtained. Furthermore, the gear working condition can be identified according to the envelope order spectrum. The analysis results from the simulation and experimental signals show that the proposed algorithm was effective in gear fault diagnosis. |
---|---|
ISSN: | 0888-3270 1096-1216 |
DOI: | 10.1016/j.ymssp.2009.07.003 |