Fabrication of nano-crystalline silicon thin film at low temperature by using a neutral beam deposition method
Low temperature (
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2010-07, Vol.312 (14), p.2145-2149 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2149 |
---|---|
container_issue | 14 |
container_start_page | 2145 |
container_title | Journal of crystal growth |
container_volume | 312 |
creator | Kang, Se-Koo Jeon, Min-Hwan Park, Jong-Yoon Lee, Hyoung-Cheol Park, Byung-Jae Yeon, Je-Kwan Yeom, Geun-Young |
description | Low temperature ( |
doi_str_mv | 10.1016/j.jcrysgro.2010.04.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855709700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024810002526</els_id><sourcerecordid>855709700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-18dec652c0908e5a1bad63ec2b5a3c1aa49ecc03667b5905f3a4b3201d0e39433</originalsourceid><addsrcrecordid>eNqFUE2LFDEQDbKCs6t_QXIRTz1WOv15UxZXhQUveg7V1dW7GdLJmKSV-fdmnNWrlyqoeh-8J8RrBXsFqnt32B8ontJDDPsayhGaPdTNM7FTQ6-rFqC-Ersy66qchxfiOqUDQGEq2Al_h1O0hNkGL8MiPfpQneUyOmc9y2SdpfLLj9bLxbpVYpYu_JKZ1yNHzFtkOZ3klqx_kCg9bzmikxPjKmc-hmT_aK-cH8P8Ujxf0CV-9bRvxPe7j99uP1f3Xz99uf1wX5Hum1ypYWbq2ppghIFbVBPOnWaqpxY1KcRmZCLQXddP7QjtorGZdEk_A-ux0fpGvL3oHmP4sXHKZrWJ2Dn0HLZkhrbtYewBCrK7ICmGlCIv5hjtivFkFJhzv-Zg_vZrzv0aaEwpshDfPFlgInRLRE82_WPX9aj0qMaCe3_Bccn703I0iSx74tlGpmzmYP9n9RtyaJaF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855709700</pqid></control><display><type>article</type><title>Fabrication of nano-crystalline silicon thin film at low temperature by using a neutral beam deposition method</title><source>Elsevier ScienceDirect Journals</source><creator>Kang, Se-Koo ; Jeon, Min-Hwan ; Park, Jong-Yoon ; Lee, Hyoung-Cheol ; Park, Byung-Jae ; Yeon, Je-Kwan ; Yeom, Geun-Young</creator><creatorcontrib>Kang, Se-Koo ; Jeon, Min-Hwan ; Park, Jong-Yoon ; Lee, Hyoung-Cheol ; Park, Byung-Jae ; Yeon, Je-Kwan ; Yeom, Geun-Young</creatorcontrib><description>Low temperature (<80
°C) neutral beam deposition (LTNBD) was investigated as a new approach to the fabrication and development of nano-crystalline silicon (nc-Si), which has better properties than that of amorphous silicon (α-Si). The difference between LTNBD and conventional PECVD is that the film formation energy of the nc-Si in LTNBD is supplied by controlled neutral beam energies at a low temperature rather than by heating. Especially, in this study, the characteristics of the nc-Si thin film were investigated by adding 10% of an inert gas such as Ne, Ar or Xe to SiH
4/H
2. Increasing the beam energy resulted in an increase in the deposition rate, but the crystallinity was decreased, due to the increased damage to the substrate. However, the addition of a higher mass inert gas to the gas mixture at a fixed beam energy resulted not only in a higher deposition rate but also in a higher crystallization volume fraction. The high resolution transmission electron microscopy image showed that the grown film is composed of about 10
nm-size grains.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2010.04.024</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Surface structure ; A3. Chemical beam epitaxy ; A3. Polycrystalline deposition ; Applied sciences ; B1. Nanomaterials ; B2. Semiconducting silicon ; B3. High electron mobility transistors ; Beams (radiation) ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Deposition ; Electronics ; Energy of formation ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Heating ; Inert ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Nanocrystals ; Nanoscale materials and structures: fabrication and characterization ; Neutral beams ; Other topics in nanoscale materials and structures ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solid-solid transitions ; Specific phase transitions ; Thin films ; Transistors</subject><ispartof>Journal of crystal growth, 2010-07, Vol.312 (14), p.2145-2149</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-18dec652c0908e5a1bad63ec2b5a3c1aa49ecc03667b5905f3a4b3201d0e39433</citedby><cites>FETCH-LOGICAL-c374t-18dec652c0908e5a1bad63ec2b5a3c1aa49ecc03667b5905f3a4b3201d0e39433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022024810002526$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22913919$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Se-Koo</creatorcontrib><creatorcontrib>Jeon, Min-Hwan</creatorcontrib><creatorcontrib>Park, Jong-Yoon</creatorcontrib><creatorcontrib>Lee, Hyoung-Cheol</creatorcontrib><creatorcontrib>Park, Byung-Jae</creatorcontrib><creatorcontrib>Yeon, Je-Kwan</creatorcontrib><creatorcontrib>Yeom, Geun-Young</creatorcontrib><title>Fabrication of nano-crystalline silicon thin film at low temperature by using a neutral beam deposition method</title><title>Journal of crystal growth</title><description>Low temperature (<80
°C) neutral beam deposition (LTNBD) was investigated as a new approach to the fabrication and development of nano-crystalline silicon (nc-Si), which has better properties than that of amorphous silicon (α-Si). The difference between LTNBD and conventional PECVD is that the film formation energy of the nc-Si in LTNBD is supplied by controlled neutral beam energies at a low temperature rather than by heating. Especially, in this study, the characteristics of the nc-Si thin film were investigated by adding 10% of an inert gas such as Ne, Ar or Xe to SiH
4/H
2. Increasing the beam energy resulted in an increase in the deposition rate, but the crystallinity was decreased, due to the increased damage to the substrate. However, the addition of a higher mass inert gas to the gas mixture at a fixed beam energy resulted not only in a higher deposition rate but also in a higher crystallization volume fraction. The high resolution transmission electron microscopy image showed that the grown film is composed of about 10
nm-size grains.</description><subject>A1. Surface structure</subject><subject>A3. Chemical beam epitaxy</subject><subject>A3. Polycrystalline deposition</subject><subject>Applied sciences</subject><subject>B1. Nanomaterials</subject><subject>B2. Semiconducting silicon</subject><subject>B3. High electron mobility transistors</subject><subject>Beams (radiation)</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition</subject><subject>Electronics</subject><subject>Energy of formation</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Heating</subject><subject>Inert</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Nanocrystals</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Neutral beams</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solid-solid transitions</subject><subject>Specific phase transitions</subject><subject>Thin films</subject><subject>Transistors</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUE2LFDEQDbKCs6t_QXIRTz1WOv15UxZXhQUveg7V1dW7GdLJmKSV-fdmnNWrlyqoeh-8J8RrBXsFqnt32B8ontJDDPsayhGaPdTNM7FTQ6-rFqC-Ersy66qchxfiOqUDQGEq2Al_h1O0hNkGL8MiPfpQneUyOmc9y2SdpfLLj9bLxbpVYpYu_JKZ1yNHzFtkOZ3klqx_kCg9bzmikxPjKmc-hmT_aK-cH8P8Ujxf0CV-9bRvxPe7j99uP1f3Xz99uf1wX5Hum1ypYWbq2ppghIFbVBPOnWaqpxY1KcRmZCLQXddP7QjtorGZdEk_A-ux0fpGvL3oHmP4sXHKZrWJ2Dn0HLZkhrbtYewBCrK7ICmGlCIv5hjtivFkFJhzv-Zg_vZrzv0aaEwpshDfPFlgInRLRE82_WPX9aj0qMaCe3_Bccn703I0iSx74tlGpmzmYP9n9RtyaJaF</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Kang, Se-Koo</creator><creator>Jeon, Min-Hwan</creator><creator>Park, Jong-Yoon</creator><creator>Lee, Hyoung-Cheol</creator><creator>Park, Byung-Jae</creator><creator>Yeon, Je-Kwan</creator><creator>Yeom, Geun-Young</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100701</creationdate><title>Fabrication of nano-crystalline silicon thin film at low temperature by using a neutral beam deposition method</title><author>Kang, Se-Koo ; Jeon, Min-Hwan ; Park, Jong-Yoon ; Lee, Hyoung-Cheol ; Park, Byung-Jae ; Yeon, Je-Kwan ; Yeom, Geun-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-18dec652c0908e5a1bad63ec2b5a3c1aa49ecc03667b5905f3a4b3201d0e39433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>A1. Surface structure</topic><topic>A3. Chemical beam epitaxy</topic><topic>A3. Polycrystalline deposition</topic><topic>Applied sciences</topic><topic>B1. Nanomaterials</topic><topic>B2. Semiconducting silicon</topic><topic>B3. High electron mobility transistors</topic><topic>Beams (radiation)</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition</topic><topic>Electronics</topic><topic>Energy of formation</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Heating</topic><topic>Inert</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Nanocrystals</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Neutral beams</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solid-solid transitions</topic><topic>Specific phase transitions</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Se-Koo</creatorcontrib><creatorcontrib>Jeon, Min-Hwan</creatorcontrib><creatorcontrib>Park, Jong-Yoon</creatorcontrib><creatorcontrib>Lee, Hyoung-Cheol</creatorcontrib><creatorcontrib>Park, Byung-Jae</creatorcontrib><creatorcontrib>Yeon, Je-Kwan</creatorcontrib><creatorcontrib>Yeom, Geun-Young</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Se-Koo</au><au>Jeon, Min-Hwan</au><au>Park, Jong-Yoon</au><au>Lee, Hyoung-Cheol</au><au>Park, Byung-Jae</au><au>Yeon, Je-Kwan</au><au>Yeom, Geun-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of nano-crystalline silicon thin film at low temperature by using a neutral beam deposition method</atitle><jtitle>Journal of crystal growth</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>312</volume><issue>14</issue><spage>2145</spage><epage>2149</epage><pages>2145-2149</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>Low temperature (<80
°C) neutral beam deposition (LTNBD) was investigated as a new approach to the fabrication and development of nano-crystalline silicon (nc-Si), which has better properties than that of amorphous silicon (α-Si). The difference between LTNBD and conventional PECVD is that the film formation energy of the nc-Si in LTNBD is supplied by controlled neutral beam energies at a low temperature rather than by heating. Especially, in this study, the characteristics of the nc-Si thin film were investigated by adding 10% of an inert gas such as Ne, Ar or Xe to SiH
4/H
2. Increasing the beam energy resulted in an increase in the deposition rate, but the crystallinity was decreased, due to the increased damage to the substrate. However, the addition of a higher mass inert gas to the gas mixture at a fixed beam energy resulted not only in a higher deposition rate but also in a higher crystallization volume fraction. The high resolution transmission electron microscopy image showed that the grown film is composed of about 10
nm-size grains.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2010.04.024</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2010-07, Vol.312 (14), p.2145-2149 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_miscellaneous_855709700 |
source | Elsevier ScienceDirect Journals |
subjects | A1. Surface structure A3. Chemical beam epitaxy A3. Polycrystalline deposition Applied sciences B1. Nanomaterials B2. Semiconducting silicon B3. High electron mobility transistors Beams (radiation) Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Deposition Electronics Energy of formation Equations of state, phase equilibria, and phase transitions Exact sciences and technology Heating Inert Materials science Methods of deposition of films and coatings film growth and epitaxy Nanocrystals Nanoscale materials and structures: fabrication and characterization Neutral beams Other topics in nanoscale materials and structures Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Solid-solid transitions Specific phase transitions Thin films Transistors |
title | Fabrication of nano-crystalline silicon thin film at low temperature by using a neutral beam deposition method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A24%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20nano-crystalline%20silicon%20thin%20film%20at%20low%20temperature%20by%20using%20a%20neutral%20beam%20deposition%20method&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Kang,%20Se-Koo&rft.date=2010-07-01&rft.volume=312&rft.issue=14&rft.spage=2145&rft.epage=2149&rft.pages=2145-2149&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2010.04.024&rft_dat=%3Cproquest_cross%3E855709700%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855709700&rft_id=info:pmid/&rft_els_id=S0022024810002526&rfr_iscdi=true |