Fabrication of nano-crystalline silicon thin film at low temperature by using a neutral beam deposition method

Low temperature (

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2010-07, Vol.312 (14), p.2145-2149
Hauptverfasser: Kang, Se-Koo, Jeon, Min-Hwan, Park, Jong-Yoon, Lee, Hyoung-Cheol, Park, Byung-Jae, Yeon, Je-Kwan, Yeom, Geun-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2149
container_issue 14
container_start_page 2145
container_title Journal of crystal growth
container_volume 312
creator Kang, Se-Koo
Jeon, Min-Hwan
Park, Jong-Yoon
Lee, Hyoung-Cheol
Park, Byung-Jae
Yeon, Je-Kwan
Yeom, Geun-Young
description Low temperature (
doi_str_mv 10.1016/j.jcrysgro.2010.04.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855709700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024810002526</els_id><sourcerecordid>855709700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-18dec652c0908e5a1bad63ec2b5a3c1aa49ecc03667b5905f3a4b3201d0e39433</originalsourceid><addsrcrecordid>eNqFUE2LFDEQDbKCs6t_QXIRTz1WOv15UxZXhQUveg7V1dW7GdLJmKSV-fdmnNWrlyqoeh-8J8RrBXsFqnt32B8ontJDDPsayhGaPdTNM7FTQ6-rFqC-Ersy66qchxfiOqUDQGEq2Al_h1O0hNkGL8MiPfpQneUyOmc9y2SdpfLLj9bLxbpVYpYu_JKZ1yNHzFtkOZ3klqx_kCg9bzmikxPjKmc-hmT_aK-cH8P8Ujxf0CV-9bRvxPe7j99uP1f3Xz99uf1wX5Hum1ypYWbq2ppghIFbVBPOnWaqpxY1KcRmZCLQXddP7QjtorGZdEk_A-ux0fpGvL3oHmP4sXHKZrWJ2Dn0HLZkhrbtYewBCrK7ICmGlCIv5hjtivFkFJhzv-Zg_vZrzv0aaEwpshDfPFlgInRLRE82_WPX9aj0qMaCe3_Bccn703I0iSx74tlGpmzmYP9n9RtyaJaF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855709700</pqid></control><display><type>article</type><title>Fabrication of nano-crystalline silicon thin film at low temperature by using a neutral beam deposition method</title><source>Elsevier ScienceDirect Journals</source><creator>Kang, Se-Koo ; Jeon, Min-Hwan ; Park, Jong-Yoon ; Lee, Hyoung-Cheol ; Park, Byung-Jae ; Yeon, Je-Kwan ; Yeom, Geun-Young</creator><creatorcontrib>Kang, Se-Koo ; Jeon, Min-Hwan ; Park, Jong-Yoon ; Lee, Hyoung-Cheol ; Park, Byung-Jae ; Yeon, Je-Kwan ; Yeom, Geun-Young</creatorcontrib><description>Low temperature (&lt;80 °C) neutral beam deposition (LTNBD) was investigated as a new approach to the fabrication and development of nano-crystalline silicon (nc-Si), which has better properties than that of amorphous silicon (α-Si). The difference between LTNBD and conventional PECVD is that the film formation energy of the nc-Si in LTNBD is supplied by controlled neutral beam energies at a low temperature rather than by heating. Especially, in this study, the characteristics of the nc-Si thin film were investigated by adding 10% of an inert gas such as Ne, Ar or Xe to SiH 4/H 2. Increasing the beam energy resulted in an increase in the deposition rate, but the crystallinity was decreased, due to the increased damage to the substrate. However, the addition of a higher mass inert gas to the gas mixture at a fixed beam energy resulted not only in a higher deposition rate but also in a higher crystallization volume fraction. The high resolution transmission electron microscopy image showed that the grown film is composed of about 10 nm-size grains.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2010.04.024</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Surface structure ; A3. Chemical beam epitaxy ; A3. Polycrystalline deposition ; Applied sciences ; B1. Nanomaterials ; B2. Semiconducting silicon ; B3. High electron mobility transistors ; Beams (radiation) ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Deposition ; Electronics ; Energy of formation ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Heating ; Inert ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Nanocrystals ; Nanoscale materials and structures: fabrication and characterization ; Neutral beams ; Other topics in nanoscale materials and structures ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solid-solid transitions ; Specific phase transitions ; Thin films ; Transistors</subject><ispartof>Journal of crystal growth, 2010-07, Vol.312 (14), p.2145-2149</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-18dec652c0908e5a1bad63ec2b5a3c1aa49ecc03667b5905f3a4b3201d0e39433</citedby><cites>FETCH-LOGICAL-c374t-18dec652c0908e5a1bad63ec2b5a3c1aa49ecc03667b5905f3a4b3201d0e39433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022024810002526$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22913919$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Se-Koo</creatorcontrib><creatorcontrib>Jeon, Min-Hwan</creatorcontrib><creatorcontrib>Park, Jong-Yoon</creatorcontrib><creatorcontrib>Lee, Hyoung-Cheol</creatorcontrib><creatorcontrib>Park, Byung-Jae</creatorcontrib><creatorcontrib>Yeon, Je-Kwan</creatorcontrib><creatorcontrib>Yeom, Geun-Young</creatorcontrib><title>Fabrication of nano-crystalline silicon thin film at low temperature by using a neutral beam deposition method</title><title>Journal of crystal growth</title><description>Low temperature (&lt;80 °C) neutral beam deposition (LTNBD) was investigated as a new approach to the fabrication and development of nano-crystalline silicon (nc-Si), which has better properties than that of amorphous silicon (α-Si). The difference between LTNBD and conventional PECVD is that the film formation energy of the nc-Si in LTNBD is supplied by controlled neutral beam energies at a low temperature rather than by heating. Especially, in this study, the characteristics of the nc-Si thin film were investigated by adding 10% of an inert gas such as Ne, Ar or Xe to SiH 4/H 2. Increasing the beam energy resulted in an increase in the deposition rate, but the crystallinity was decreased, due to the increased damage to the substrate. However, the addition of a higher mass inert gas to the gas mixture at a fixed beam energy resulted not only in a higher deposition rate but also in a higher crystallization volume fraction. The high resolution transmission electron microscopy image showed that the grown film is composed of about 10 nm-size grains.</description><subject>A1. Surface structure</subject><subject>A3. Chemical beam epitaxy</subject><subject>A3. Polycrystalline deposition</subject><subject>Applied sciences</subject><subject>B1. Nanomaterials</subject><subject>B2. Semiconducting silicon</subject><subject>B3. High electron mobility transistors</subject><subject>Beams (radiation)</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition</subject><subject>Electronics</subject><subject>Energy of formation</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Heating</subject><subject>Inert</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Nanocrystals</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Neutral beams</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solid-solid transitions</subject><subject>Specific phase transitions</subject><subject>Thin films</subject><subject>Transistors</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUE2LFDEQDbKCs6t_QXIRTz1WOv15UxZXhQUveg7V1dW7GdLJmKSV-fdmnNWrlyqoeh-8J8RrBXsFqnt32B8ontJDDPsayhGaPdTNM7FTQ6-rFqC-Ersy66qchxfiOqUDQGEq2Al_h1O0hNkGL8MiPfpQneUyOmc9y2SdpfLLj9bLxbpVYpYu_JKZ1yNHzFtkOZ3klqx_kCg9bzmikxPjKmc-hmT_aK-cH8P8Ujxf0CV-9bRvxPe7j99uP1f3Xz99uf1wX5Hum1ypYWbq2ppghIFbVBPOnWaqpxY1KcRmZCLQXddP7QjtorGZdEk_A-ux0fpGvL3oHmP4sXHKZrWJ2Dn0HLZkhrbtYewBCrK7ICmGlCIv5hjtivFkFJhzv-Zg_vZrzv0aaEwpshDfPFlgInRLRE82_WPX9aj0qMaCe3_Bccn703I0iSx74tlGpmzmYP9n9RtyaJaF</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Kang, Se-Koo</creator><creator>Jeon, Min-Hwan</creator><creator>Park, Jong-Yoon</creator><creator>Lee, Hyoung-Cheol</creator><creator>Park, Byung-Jae</creator><creator>Yeon, Je-Kwan</creator><creator>Yeom, Geun-Young</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100701</creationdate><title>Fabrication of nano-crystalline silicon thin film at low temperature by using a neutral beam deposition method</title><author>Kang, Se-Koo ; Jeon, Min-Hwan ; Park, Jong-Yoon ; Lee, Hyoung-Cheol ; Park, Byung-Jae ; Yeon, Je-Kwan ; Yeom, Geun-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-18dec652c0908e5a1bad63ec2b5a3c1aa49ecc03667b5905f3a4b3201d0e39433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>A1. Surface structure</topic><topic>A3. Chemical beam epitaxy</topic><topic>A3. Polycrystalline deposition</topic><topic>Applied sciences</topic><topic>B1. Nanomaterials</topic><topic>B2. Semiconducting silicon</topic><topic>B3. High electron mobility transistors</topic><topic>Beams (radiation)</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition</topic><topic>Electronics</topic><topic>Energy of formation</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Heating</topic><topic>Inert</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Nanocrystals</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Neutral beams</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solid-solid transitions</topic><topic>Specific phase transitions</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Se-Koo</creatorcontrib><creatorcontrib>Jeon, Min-Hwan</creatorcontrib><creatorcontrib>Park, Jong-Yoon</creatorcontrib><creatorcontrib>Lee, Hyoung-Cheol</creatorcontrib><creatorcontrib>Park, Byung-Jae</creatorcontrib><creatorcontrib>Yeon, Je-Kwan</creatorcontrib><creatorcontrib>Yeom, Geun-Young</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Se-Koo</au><au>Jeon, Min-Hwan</au><au>Park, Jong-Yoon</au><au>Lee, Hyoung-Cheol</au><au>Park, Byung-Jae</au><au>Yeon, Je-Kwan</au><au>Yeom, Geun-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of nano-crystalline silicon thin film at low temperature by using a neutral beam deposition method</atitle><jtitle>Journal of crystal growth</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>312</volume><issue>14</issue><spage>2145</spage><epage>2149</epage><pages>2145-2149</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>Low temperature (&lt;80 °C) neutral beam deposition (LTNBD) was investigated as a new approach to the fabrication and development of nano-crystalline silicon (nc-Si), which has better properties than that of amorphous silicon (α-Si). The difference between LTNBD and conventional PECVD is that the film formation energy of the nc-Si in LTNBD is supplied by controlled neutral beam energies at a low temperature rather than by heating. Especially, in this study, the characteristics of the nc-Si thin film were investigated by adding 10% of an inert gas such as Ne, Ar or Xe to SiH 4/H 2. Increasing the beam energy resulted in an increase in the deposition rate, but the crystallinity was decreased, due to the increased damage to the substrate. However, the addition of a higher mass inert gas to the gas mixture at a fixed beam energy resulted not only in a higher deposition rate but also in a higher crystallization volume fraction. The high resolution transmission electron microscopy image showed that the grown film is composed of about 10 nm-size grains.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2010.04.024</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2010-07, Vol.312 (14), p.2145-2149
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_855709700
source Elsevier ScienceDirect Journals
subjects A1. Surface structure
A3. Chemical beam epitaxy
A3. Polycrystalline deposition
Applied sciences
B1. Nanomaterials
B2. Semiconducting silicon
B3. High electron mobility transistors
Beams (radiation)
Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Deposition
Electronics
Energy of formation
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Heating
Inert
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Nanocrystals
Nanoscale materials and structures: fabrication and characterization
Neutral beams
Other topics in nanoscale materials and structures
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Solid-solid transitions
Specific phase transitions
Thin films
Transistors
title Fabrication of nano-crystalline silicon thin film at low temperature by using a neutral beam deposition method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A24%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20nano-crystalline%20silicon%20thin%20film%20at%20low%20temperature%20by%20using%20a%20neutral%20beam%20deposition%20method&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Kang,%20Se-Koo&rft.date=2010-07-01&rft.volume=312&rft.issue=14&rft.spage=2145&rft.epage=2149&rft.pages=2145-2149&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2010.04.024&rft_dat=%3Cproquest_cross%3E855709700%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855709700&rft_id=info:pmid/&rft_els_id=S0022024810002526&rfr_iscdi=true