High performance metal-supported intermediate temperature solid oxide fuel cells fabricated by atmospheric plasma spraying

▶ High performance metal-supported solid oxide fuel cell with nano-structured anode. ▶ Developing analytic power prediction of cells. ▶ Simple equivalent circuit modeling and AC impedance analysis. The LSGM(La 0.8Sr 0.2Ga 0.8Mg 0.2O 3) electrolyte based intermediate temperature solid oxide fuel cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2011-02, Vol.196 (4), p.1932-1939
Hauptverfasser: Hwang, Chang-sing, Tsai, Chun-Huang, Yu, Jen-Feng, Chang, Chun-Liang, Lin, Jun-Meng, Shiu, Yaw-Hwa, Cheng, Shih-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:▶ High performance metal-supported solid oxide fuel cell with nano-structured anode. ▶ Developing analytic power prediction of cells. ▶ Simple equivalent circuit modeling and AC impedance analysis. The LSGM(La 0.8Sr 0.2Ga 0.8Mg 0.2O 3) electrolyte based intermediate temperature solid oxide fuel cells (ITSOFCs) supported by porous nickel substrates with different permeabilities are prepared by plasma spray technology for performance studies. The cell having a porous nickel substrate with a permeability of 3.4 Darcy, an LSCM(La 0.75Sr 0.25Cr 0.5Mn 0.5O 3) interlayer on the nickel substrate, a nano-structured LDC(Ce 0.55La 0.45O 2)/Ni anode functional layer, an LDC interlayer, an LSGM/LSCF(La 0.58Sr 0.4Co 0.2Fe 0.8O 3) cathode interlayer and an LSCF cathode current collector layer shows remarkable electric output power densities such as 1270 mW cm −2 (800 °C), 978 mW cm −2 (750 °C) and 702 mW cm −2 (700 °C) at 0.6 V cell voltage under 335 ml min −1 H 2 and 670 ml min −1 air flow rates. SEM, TEM, EDX, AC impedance, voltage and power data with related analyses are presented here to support this high performance. The durability test of the cell with the best power performance shows a degradation rate of about 3% kh −1 at the test conditions of 400 mA cm −2 constant current density and 700 °C. Results demonstrate the success of APS technology for fabricating high performance metal-supported and LSGM based ITSOFCs.
ISSN:0378-7753
1873-2755
DOI:10.1016/j.jpowsour.2010.10.029