Spectral properties of p -Laplacian problems with Neumann and mixed-type multi-point boundary conditions
We consider the boundary value problem consisting of the p -Laplacian equation (1) − ϕ p ( u ′ ) ′ = λ ϕ p ( u ) , on ( − 1 , 1 ) , where p > 1 , ϕ p ( s ) ≔ | s | p − 1 sgn s for s ∈ R , λ ∈ R , together with the multi-point boundary conditions (2) ϕ p ( u ′ ( ± 1 ) ) = ∑ i = 1 m ± α i ± ϕ p (...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2011-02, Vol.74 (4), p.1471-1484 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the boundary value problem consisting of the
p
-Laplacian equation
(1)
−
ϕ
p
(
u
′
)
′
=
λ
ϕ
p
(
u
)
,
on
(
−
1
,
1
)
,
where
p
>
1
,
ϕ
p
(
s
)
≔
|
s
|
p
−
1
sgn
s
for
s
∈
R
,
λ
∈
R
, together with the multi-point boundary conditions
(2)
ϕ
p
(
u
′
(
±
1
)
)
=
∑
i
=
1
m
±
α
i
±
ϕ
p
(
u
′
(
η
i
±
)
)
,
or
(3)
u
(
±
1
)
=
∑
i
=
1
m
±
α
i
±
u
(
η
i
±
)
,
or a mixed pair of these conditions (with one condition holding at each of
x
=
−
1
and
x
=
1
). In
(2),
(3),
m
±
⩾
1
are integers,
η
i
±
∈
(
−
1
,
1
)
,
1
⩽
i
⩽
m
±
, and the coefficients
α
i
±
satisfy
∑
i
=
1
m
±
|
α
i
±
|
<
1
.
We term the conditions
(2) and
(3), respectively,
Neumann-type and
Dirichlet-type boundary conditions, since they reduce to the standard Neumann and Dirichlet boundary conditions when
α
±
=
0
.
Given a suitable pair of boundary conditions, a number
λ
is an
eigenvalue of the corresponding boundary value problem if there exists a non-trivial solution
u
(an
eigenfunction). The
spectrum of the problem is the set of eigenvalues. In this paper we obtain various spectral properties of these eigenvalue problems. We then use these properties to prove Rabinowitz-type, global bifurcation theorems for related bifurcation problems, and to obtain nonresonance conditions (in terms of the eigenvalues) for the solvability of related inhomogeneous problems. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2010.10.020 |