Photocatalytic, optical and electrical properties of copper-doped zinc sulfide thin films
Thin films of ZnS : Cu nanoparticles were prepared by electron beam evaporation on glass substrates. The Cu content was varied from 0 to 9 at%. XRD examination of the as-prepared films revealed the presence of polycrystalline hexagonal ZnS with preferred orientation depending on the Cu content. As a...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2010-01, Vol.43 (3), p.035406-035406 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thin films of ZnS : Cu nanoparticles were prepared by electron beam evaporation on glass substrates. The Cu content was varied from 0 to 9 at%. XRD examination of the as-prepared films revealed the presence of polycrystalline hexagonal ZnS with preferred orientation depending on the Cu content. As annealing was carried out, grain growth was observed and a new orthorhombic copper sulfate phase emerged. The photocatalytic behaviour of ZnS : Cu was mainly evaluated by measuring the decomposition of methylene blue. The photocatalytic activities were found to decrease with increasing Cu content as well as with increasing annealing temperature. The optical transmittance and reflectance measurements were performed using a spectrophotometer. The spectral transmittance was decreased and the band gap energy was shifted from 3.45 to 3.20 eV with increasing Cu content. The refractive index was determined from transmittance using the Swanepoel method. The refractive index was found to depend on Cu content as well as annealing temperature. A strong decrease in room temperature resistivity was obtained with increasing Cu content. The obtained results are interesting and may find applications in photodegradation of pollutants and future display devices. |
---|---|
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/0022-3727/43/3/035406 |