Simulated annealing based parallel genetic algorithm for facility layout problem

The facility layout problem (FLP), a typical combinational optimisation problem, is addressed in this paper by implementing parallel simulated annealing (SA) and genetic algorithms (GAs) based on a coarse-grained model to derive solutions for solving the static FLP with rectangle shape areas. Based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2011-03, Vol.49 (6), p.1801-1812
Hauptverfasser: Ku, Meei-Yuh, Hu, Michael H., Wang, Ming-Jaan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The facility layout problem (FLP), a typical combinational optimisation problem, is addressed in this paper by implementing parallel simulated annealing (SA) and genetic algorithms (GAs) based on a coarse-grained model to derive solutions for solving the static FLP with rectangle shape areas. Based on the consideration of minimising the material flow factor cost (MFFC), shape ratio factor (SRF) and area utilisation factor (AUF), a total layout cost (TLC) function is derived by conducting a weighted summation of MFFC, SRF and AUF. The evolution operations (including crossover, mutation, and selection) of GA provide a population-based global search in the space of possible solutions, and the SA algorithm can lead to an efficient local search near the optimal solution. By combing the characteristics of GA and SA, better solutions will be obtained. Moreover, the parallel implementation of simulated annealing based genetic algorithm (SAGA) enables a quick search for the optimal solution. The proposed method is tested by performing a case study simulation and the results confirm its feasibility and superiority to other approaches for solving FLP.
ISSN:0020-7543
1366-588X
DOI:10.1080/00207541003645789