Layout design optimization for magneto-electro-elastic laminate composites for maximized energy conversion under mechanical loading
Magneto-electro-elastic (MEE) laminate composites with piezoelectric and piezomagnetic phases can be utilized as materials providing energy conversion among magnetic, electric and mechanical energies. This work is concerned with the development of a systematic design method of MEE composites with ma...
Gespeichert in:
Veröffentlicht in: | Smart materials and structures 2010-05, Vol.19 (5), p.055008-055008 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magneto-electro-elastic (MEE) laminate composites with piezoelectric and piezomagnetic phases can be utilized as materials providing energy conversion among magnetic, electric and mechanical energies. This work is concerned with the development of a systematic design method of MEE composites with maximized conversion of mechanical energy to electric and/or magnetic energy. To predict the energy conversion phenomena, a fully coupled MEE theory is employed. A composite plate is assumed to be simply supported and is discretized into a number of laminates for analysis using a semi-analytic finite element method. Since the optimal stacking sequences for piezoelectric/piezomagnetic phases and the optimal thickness for each phase must be simultaneously determined, we propose formulating the design problem as a topology optimization problem. To implement the topology optimization, two interpolation models, the standard SIMP (solid isotropic material with penalization) model and the micromechanics model, are investigated. After solving benchmark test problems, design examples dealing with multifunctional composites are considered. |
---|---|
ISSN: | 0964-1726 1361-665X |
DOI: | 10.1088/0964-1726/19/5/055008 |