Boron nitride nanotubes

This article presents an overview of the up-to-date developments in boron nitride nanotubes (BNNTs), including theory, fabrication, structure, physical properties, chemical functionalization and applications. Soon after the discovery of carbon nanotubes, BNNTs were theoretically predicted, followed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. R, Reports Reports, 2010-11, Vol.70 (3), p.92-111
Hauptverfasser: Zhi, Chunyi, Bando, Yoshio, Tang, Chengchun, Golberg, Dmitri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents an overview of the up-to-date developments in boron nitride nanotubes (BNNTs), including theory, fabrication, structure, physical properties, chemical functionalization and applications. Soon after the discovery of carbon nanotubes, BNNTs were theoretically predicted, followed by their successful fabrication by arc-discharge in 1995. Subsequently, various methods were developed for the BNNT synthesis, although till now, the growth of highly pure single-walled BNNTs at large quantities remains a challenge. The physical property investigations reveal that BNNTs’ exhibit a stable wide band gap, superb mechanical strength, high thermal conductivity, ultra-violet light emission, etc. All these properties build up the solid basis for their future technological applications. Chemical modification is also a decent approach to adjust the BNNTs properties. In recent years the yield of multi-walled BNNTs has reached the grams level, that can allow their detailed chemical functionalization studies. So far, many kinds of functionalizations through different weak interactions and covalent bonding were developed. These treatments improved BNNT dispersions in solvents and extended their fields of applications. Moreover, some application-related studies on multi-walled BNNTs, such as composites fabrication, hydrogen storage, biocompatibility, and mechanical, and electrical breakdown tests have also been started in recent years.
ISSN:0927-796X
1879-212X
DOI:10.1016/j.mser.2010.06.004