Obtaining better quality final clustering by merging a collection of clusterings

Motivation: Clustering methods including k-means, SOM, UPGMA, DAA, CLICK, GENECLUSTER, CAST, DHC, PMETIS and KMETIS have been widely used in biological studies for gene expression, protein localization, sequence recognition and more. All these clustering methods have some benefits and drawbacks. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2010-10, Vol.26 (20), p.2645-2646
Hauptverfasser: Mimaroglu, Selim, Erdil, Ertunc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivation: Clustering methods including k-means, SOM, UPGMA, DAA, CLICK, GENECLUSTER, CAST, DHC, PMETIS and KMETIS have been widely used in biological studies for gene expression, protein localization, sequence recognition and more. All these clustering methods have some benefits and drawbacks. We propose a novel graph-based clustering software called COMUSA for combining the benefits of a collection of clusterings into a final clustering having better overall quality. Results: COMUSA implementation is compared with PMETIS, KMETIS and k-means. Experimental results on artificial, real and biological datasets demonstrate the effectiveness of our method. COMUSA produces very good quality clusters in a short amount of time. Availability: http://www.cs.umb.edu/∼smimarog/comusa Contact: selim.mimaroglu@bahcesehir.edu.tr
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btq489