Alternative dual frames for digital-to-analog conversion in sigma–delta quantization

We design alternative dual frames for linearly reconstructing signals from sigma–delta (ΣΔ) quantized finite frame coefficients. In the setting of sampling expansions for bandlimited functions, it is known that a stable r th order sigma–delta quantizer produces approximations where the approximation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in computational mathematics 2010, Vol.32 (1), p.73-102
Hauptverfasser: Lammers, Mark, Powell, Alexander M., Yılmaz, Özgür
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102
container_issue 1
container_start_page 73
container_title Advances in computational mathematics
container_volume 32
creator Lammers, Mark
Powell, Alexander M.
Yılmaz, Özgür
description We design alternative dual frames for linearly reconstructing signals from sigma–delta (ΣΔ) quantized finite frame coefficients. In the setting of sampling expansions for bandlimited functions, it is known that a stable r th order sigma–delta quantizer produces approximations where the approximation error is at most of order 1 / λ r , and λ  > 1 is the oversampling ratio. We show that the counterpart of this result is not true for several families of redundant finite frames for when the canonical dual frame is used in linear reconstruction. As a remedy, we construct alternative dual frame sequences which enable an r th order sigma–delta quantizer to achieve approximation error of order 1/ N r for certain sequences of frames where N is the frame size. We also present several numerical examples regarding the constructions.
doi_str_mv 10.1007/s10444-008-9088-1
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_miscellaneous_855679646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>855679646</sourcerecordid><originalsourceid>FETCH-LOGICAL-p160t-b6f3f6434f050461c3c97d7666d648781fd8620806ae4e0fd1e4334cd9e5efc63</originalsourceid><addsrcrecordid>eNotkM1OAyEcxInRxFp9AG_cPKF_CgvssWn8Sky8qFeCC2xoKLQL24Mn38E39Encpp5mJplMMj-ErincUgB5VyhwzgmAIi0oRegJmtFGLqbE-enkgbZEUqHO0UUpawBohWxm6GMZqxuSqWHvsB1NxH4wG1ewzwO2oQ_VRFIzMcnE3OMup70bSsgJh4RL6Dfm9_vHulgN3o0m1fA1TeV0ic68icVd_escvT_cv62eyMvr4_Nq-UK2VEAln8IzLzjjHhrggnasa6WVQggruJKKeqvEAhQI47gDb6njjPHOtq5xvhNsjm6Ou9sh70ZXqt6E0rkYTXJ5LFo1jZCt4Ifm4tgs2yGk3g16ncfpeCyagj4w1EeGemKoDww1ZX9F12af</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855679646</pqid></control><display><type>article</type><title>Alternative dual frames for digital-to-analog conversion in sigma–delta quantization</title><source>SpringerLink Journals</source><creator>Lammers, Mark ; Powell, Alexander M. ; Yılmaz, Özgür</creator><creatorcontrib>Lammers, Mark ; Powell, Alexander M. ; Yılmaz, Özgür</creatorcontrib><description>We design alternative dual frames for linearly reconstructing signals from sigma–delta (ΣΔ) quantized finite frame coefficients. In the setting of sampling expansions for bandlimited functions, it is known that a stable r th order sigma–delta quantizer produces approximations where the approximation error is at most of order 1 / λ r , and λ  &gt; 1 is the oversampling ratio. We show that the counterpart of this result is not true for several families of redundant finite frames for when the canonical dual frame is used in linear reconstruction. As a remedy, we construct alternative dual frame sequences which enable an r th order sigma–delta quantizer to achieve approximation error of order 1/ N r for certain sequences of frames where N is the frame size. We also present several numerical examples regarding the constructions.</description><identifier>ISSN: 1019-7168</identifier><identifier>EISSN: 1572-9044</identifier><identifier>DOI: 10.1007/s10444-008-9088-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Approximation ; Computational Mathematics and Numerical Analysis ; Computational Science and Engineering ; Construction ; Conversion ; Counters ; Errors ; Frames ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Visualization</subject><ispartof>Advances in computational mathematics, 2010, Vol.32 (1), p.73-102</ispartof><rights>Springer Science+Business Media, LLC. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p160t-b6f3f6434f050461c3c97d7666d648781fd8620806ae4e0fd1e4334cd9e5efc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10444-008-9088-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10444-008-9088-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lammers, Mark</creatorcontrib><creatorcontrib>Powell, Alexander M.</creatorcontrib><creatorcontrib>Yılmaz, Özgür</creatorcontrib><title>Alternative dual frames for digital-to-analog conversion in sigma–delta quantization</title><title>Advances in computational mathematics</title><addtitle>Adv Comput Math</addtitle><description>We design alternative dual frames for linearly reconstructing signals from sigma–delta (ΣΔ) quantized finite frame coefficients. In the setting of sampling expansions for bandlimited functions, it is known that a stable r th order sigma–delta quantizer produces approximations where the approximation error is at most of order 1 / λ r , and λ  &gt; 1 is the oversampling ratio. We show that the counterpart of this result is not true for several families of redundant finite frames for when the canonical dual frame is used in linear reconstruction. As a remedy, we construct alternative dual frame sequences which enable an r th order sigma–delta quantizer to achieve approximation error of order 1/ N r for certain sequences of frames where N is the frame size. We also present several numerical examples regarding the constructions.</description><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computational Science and Engineering</subject><subject>Construction</subject><subject>Conversion</subject><subject>Counters</subject><subject>Errors</subject><subject>Frames</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Visualization</subject><issn>1019-7168</issn><issn>1572-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotkM1OAyEcxInRxFp9AG_cPKF_CgvssWn8Sky8qFeCC2xoKLQL24Mn38E39Encpp5mJplMMj-ErincUgB5VyhwzgmAIi0oRegJmtFGLqbE-enkgbZEUqHO0UUpawBohWxm6GMZqxuSqWHvsB1NxH4wG1ewzwO2oQ_VRFIzMcnE3OMup70bSsgJh4RL6Dfm9_vHulgN3o0m1fA1TeV0ic68icVd_escvT_cv62eyMvr4_Nq-UK2VEAln8IzLzjjHhrggnasa6WVQggruJKKeqvEAhQI47gDb6njjPHOtq5xvhNsjm6Ou9sh70ZXqt6E0rkYTXJ5LFo1jZCt4Ifm4tgs2yGk3g16ncfpeCyagj4w1EeGemKoDww1ZX9F12af</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Lammers, Mark</creator><creator>Powell, Alexander M.</creator><creator>Yılmaz, Özgür</creator><general>Springer US</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2010</creationdate><title>Alternative dual frames for digital-to-analog conversion in sigma–delta quantization</title><author>Lammers, Mark ; Powell, Alexander M. ; Yılmaz, Özgür</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p160t-b6f3f6434f050461c3c97d7666d648781fd8620806ae4e0fd1e4334cd9e5efc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computational Science and Engineering</topic><topic>Construction</topic><topic>Conversion</topic><topic>Counters</topic><topic>Errors</topic><topic>Frames</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lammers, Mark</creatorcontrib><creatorcontrib>Powell, Alexander M.</creatorcontrib><creatorcontrib>Yılmaz, Özgür</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lammers, Mark</au><au>Powell, Alexander M.</au><au>Yılmaz, Özgür</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternative dual frames for digital-to-analog conversion in sigma–delta quantization</atitle><jtitle>Advances in computational mathematics</jtitle><stitle>Adv Comput Math</stitle><date>2010</date><risdate>2010</risdate><volume>32</volume><issue>1</issue><spage>73</spage><epage>102</epage><pages>73-102</pages><issn>1019-7168</issn><eissn>1572-9044</eissn><abstract>We design alternative dual frames for linearly reconstructing signals from sigma–delta (ΣΔ) quantized finite frame coefficients. In the setting of sampling expansions for bandlimited functions, it is known that a stable r th order sigma–delta quantizer produces approximations where the approximation error is at most of order 1 / λ r , and λ  &gt; 1 is the oversampling ratio. We show that the counterpart of this result is not true for several families of redundant finite frames for when the canonical dual frame is used in linear reconstruction. As a remedy, we construct alternative dual frame sequences which enable an r th order sigma–delta quantizer to achieve approximation error of order 1/ N r for certain sequences of frames where N is the frame size. We also present several numerical examples regarding the constructions.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10444-008-9088-1</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1019-7168
ispartof Advances in computational mathematics, 2010, Vol.32 (1), p.73-102
issn 1019-7168
1572-9044
language eng
recordid cdi_proquest_miscellaneous_855679646
source SpringerLink Journals
subjects Approximation
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Construction
Conversion
Counters
Errors
Frames
Mathematical analysis
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mathematics
Mathematics and Statistics
Visualization
title Alternative dual frames for digital-to-analog conversion in sigma–delta quantization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A11%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternative%20dual%20frames%20for%20digital-to-analog%20conversion%20in%20sigma%E2%80%93delta%20quantization&rft.jtitle=Advances%20in%20computational%20mathematics&rft.au=Lammers,%20Mark&rft.date=2010&rft.volume=32&rft.issue=1&rft.spage=73&rft.epage=102&rft.pages=73-102&rft.issn=1019-7168&rft.eissn=1572-9044&rft_id=info:doi/10.1007/s10444-008-9088-1&rft_dat=%3Cproquest_sprin%3E855679646%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855679646&rft_id=info:pmid/&rfr_iscdi=true