The effect of immobilization of heparin and bone morphogenic protein-2 (BMP-2) to titanium surfaces on inflammation and osteoblast function

Abstract The aim of this study was to investigate biologic function of bone morphorgenic protein-2 (rhBMP-2) immobilized on the heparin-grafted Ti surface. Ti surfaces were first modified by 3-aminopropyltriethoxysilane (ATPES), followed by grafting of heparin. BMP-2 was then immobilized on the hepa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2011-01, Vol.32 (2), p.366-373
Hauptverfasser: Kim, Sung Eun, Song, Sang-Hun, Yun, Young Pil, Choi, Byung-Joon, Kwon, Il Keun, Bae, Min Soo, Moon, Ho-Jin, Kwon, Yong-Dae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The aim of this study was to investigate biologic function of bone morphorgenic protein-2 (rhBMP-2) immobilized on the heparin-grafted Ti surface. Ti surfaces were first modified by 3-aminopropyltriethoxysilane (ATPES), followed by grafting of heparin. BMP-2 was then immobilized on the heparin-grafted Ti surfaces. Pristine Ti and functionalized Ti surfaces were characterized by X-ray photoelectron spectroscopy (XPS), measurement of water contact angles, and protein adsorption. The biological activity of MG-63 cells on pristine and functionalized Ti surfaces was investigated by cell proliferation assays, measurement of alkaline phosphate (ALP) activity, and determination of calcium deposition. Anti-inflammatory effects were assessed by RT-PCR to measure the transcript levels of IL-6 and TNF-α. XPS revealed that heparin and BMP-2 were successfully grafted and immobilized on the Ti surfaces, respectively. In addition, Ti surfaces with BMP-2 immobilized were more hydrophilic than pristine Ti. Furthermore, BMP-2 immobilized Ti promoted significantly higher ALP activity and calcium deposition by MG-63 cells than pristine Ti. The inflammatory response was also decreased when cells were grown on heparin-grafted, BMP-2-immobilized Ti surfaces. The results of this study suggest that by grafting heparin and immobilizing BMP-2 on Ti surfaces, inflammation can be inhibited and osteoblast function promoted.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2010.09.008