On the First Hitting Time of a One-dimensional Diffusion and a Compound Poisson Process

It is studied the first-passage time (FPT) of a time homogeneous one-dimensional diffusion, driven by the stochastic differential equation dX ( t ) =  μ ( X ( t )) dt  +  σ ( X ( t )) dB t , X (0) =  x 0 , through b  +  Y ( t ), where b  >  x 0 and Y ( t ) is a compound Poisson process with rate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methodology and computing in applied probability 2010-09, Vol.12 (3), p.473-490
1. Verfasser: Abundo, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is studied the first-passage time (FPT) of a time homogeneous one-dimensional diffusion, driven by the stochastic differential equation dX ( t ) =  μ ( X ( t )) dt  +  σ ( X ( t )) dB t , X (0) =  x 0 , through b  +  Y ( t ), where b  >  x 0 and Y ( t ) is a compound Poisson process with rate λ  > 0 starting at 0, which is independent of the Brownian motion B t . In particular, the FPT density is investigated, generalizing a previous result, already known in the case when X ( t ) =  μt  +  B t , for which the FPT density is the solution of a certain integral equation. A numerical method is shown to calculate approximately the FPT density; some examples and numerical results are also reported.
ISSN:1387-5841
1573-7713
DOI:10.1007/s11009-008-9115-1