Regularity condition by mean oscillation to a weak solution of the 2-dimensional Harmonic heat flow into sphere

We show a regularity criterion to the harmonic heat flow from 2-dimensional Riemannian manifold M into a sphere. It is shown that a weak solution of the harmonic heat flow from 2-dimensional manifold into a sphere is regular under the criterion where BMO r is the space of bounded mean oscillations o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2008-12, Vol.33 (4), p.391-415
Hauptverfasser: Misawa, Masashi, Ogawa, Takayoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 415
container_issue 4
container_start_page 391
container_title Calculus of variations and partial differential equations
container_volume 33
creator Misawa, Masashi
Ogawa, Takayoshi
description We show a regularity criterion to the harmonic heat flow from 2-dimensional Riemannian manifold M into a sphere. It is shown that a weak solution of the harmonic heat flow from 2-dimensional manifold into a sphere is regular under the criterion where BMO r is the space of bounded mean oscillations on M . A sharp version of the Sobolev inequality of the Brezis–Gallouet type is introduced on M . A monotonicity formula by the mean oscillation is established and applied for proving such a regularity criterion for weak solutions as above.
doi_str_mv 10.1007/s00526-008-0166-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855674787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>855674787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-2086d035eafb0bd241d6c9a8665ffaf3eb4a5a3a44fdffb7658fa6d0a774d9cd3</originalsourceid><addsrcrecordid>eNqNkcFq3DAURUVpoZM0H5Cd6KYrNU-yJMvLMrSZQiBQmrV4tqWMUtuaSDbD_H00mUAgEOjqweWcC49LyCWH7xygvsoASmgGYBhwrZn6QFZcVoKBqdRHsoJGSia0bj6Ts5wfALgyQq5I_OPulwFTmA-0i1Mf5hAn2h7o6HCiMXdhGPA5myNFunf4j-Y4LM9R9HTeOipYH0Y35RLhQDeYxjiFjm4dztQPcU_DVOS827rkvpBPHofsLl7uObn79fPvesNubq9_r3_csK6qm5kJMLqHSjn0LbS9kLzXXYNGa-U9-sq1EhVWKKXvvW9rrYzHYmBdy77p-uqcfDv17lJ8XFye7Rhy58ozk4tLtkYpXcva1P9JVooX8usb8iEuqfycreCN4EoaKBA_QV2KOSfn7S6FEdPBcrDHqexpKlumsseprCqOODm5sNO9S6_F70tP0GWX-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219215480</pqid></control><display><type>article</type><title>Regularity condition by mean oscillation to a weak solution of the 2-dimensional Harmonic heat flow into sphere</title><source>SpringerLink Journals</source><creator>Misawa, Masashi ; Ogawa, Takayoshi</creator><creatorcontrib>Misawa, Masashi ; Ogawa, Takayoshi</creatorcontrib><description>We show a regularity criterion to the harmonic heat flow from 2-dimensional Riemannian manifold M into a sphere. It is shown that a weak solution of the harmonic heat flow from 2-dimensional manifold into a sphere is regular under the criterion where BMO r is the space of bounded mean oscillations on M . A sharp version of the Sobolev inequality of the Brezis–Gallouet type is introduced on M . A monotonicity formula by the mean oscillation is established and applied for proving such a regularity criterion for weak solutions as above.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-008-0166-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis ; Calculus of variations ; Calculus of Variations and Optimal Control; Optimization ; Control ; Criteria ; Harmonics ; Heat transfer ; Heat transmission ; Manifolds ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Oscillations ; Partial differential equations ; Regularity ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2008-12, Vol.33 (4), p.391-415</ispartof><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-2086d035eafb0bd241d6c9a8665ffaf3eb4a5a3a44fdffb7658fa6d0a774d9cd3</citedby><cites>FETCH-LOGICAL-c379t-2086d035eafb0bd241d6c9a8665ffaf3eb4a5a3a44fdffb7658fa6d0a774d9cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-008-0166-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-008-0166-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Misawa, Masashi</creatorcontrib><creatorcontrib>Ogawa, Takayoshi</creatorcontrib><title>Regularity condition by mean oscillation to a weak solution of the 2-dimensional Harmonic heat flow into sphere</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We show a regularity criterion to the harmonic heat flow from 2-dimensional Riemannian manifold M into a sphere. It is shown that a weak solution of the harmonic heat flow from 2-dimensional manifold into a sphere is regular under the criterion where BMO r is the space of bounded mean oscillations on M . A sharp version of the Sobolev inequality of the Brezis–Gallouet type is introduced on M . A monotonicity formula by the mean oscillation is established and applied for proving such a regularity criterion for weak solutions as above.</description><subject>Analysis</subject><subject>Calculus of variations</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Criteria</subject><subject>Harmonics</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Oscillations</subject><subject>Partial differential equations</subject><subject>Regularity</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkcFq3DAURUVpoZM0H5Cd6KYrNU-yJMvLMrSZQiBQmrV4tqWMUtuaSDbD_H00mUAgEOjqweWcC49LyCWH7xygvsoASmgGYBhwrZn6QFZcVoKBqdRHsoJGSia0bj6Ts5wfALgyQq5I_OPulwFTmA-0i1Mf5hAn2h7o6HCiMXdhGPA5myNFunf4j-Y4LM9R9HTeOipYH0Y35RLhQDeYxjiFjm4dztQPcU_DVOS827rkvpBPHofsLl7uObn79fPvesNubq9_r3_csK6qm5kJMLqHSjn0LbS9kLzXXYNGa-U9-sq1EhVWKKXvvW9rrYzHYmBdy77p-uqcfDv17lJ8XFye7Rhy58ozk4tLtkYpXcva1P9JVooX8usb8iEuqfycreCN4EoaKBA_QV2KOSfn7S6FEdPBcrDHqexpKlumsseprCqOODm5sNO9S6_F70tP0GWX-A</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Misawa, Masashi</creator><creator>Ogawa, Takayoshi</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20081201</creationdate><title>Regularity condition by mean oscillation to a weak solution of the 2-dimensional Harmonic heat flow into sphere</title><author>Misawa, Masashi ; Ogawa, Takayoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-2086d035eafb0bd241d6c9a8665ffaf3eb4a5a3a44fdffb7658fa6d0a774d9cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analysis</topic><topic>Calculus of variations</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Criteria</topic><topic>Harmonics</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Oscillations</topic><topic>Partial differential equations</topic><topic>Regularity</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Misawa, Masashi</creatorcontrib><creatorcontrib>Ogawa, Takayoshi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Misawa, Masashi</au><au>Ogawa, Takayoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularity condition by mean oscillation to a weak solution of the 2-dimensional Harmonic heat flow into sphere</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2008-12-01</date><risdate>2008</risdate><volume>33</volume><issue>4</issue><spage>391</spage><epage>415</epage><pages>391-415</pages><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We show a regularity criterion to the harmonic heat flow from 2-dimensional Riemannian manifold M into a sphere. It is shown that a weak solution of the harmonic heat flow from 2-dimensional manifold into a sphere is regular under the criterion where BMO r is the space of bounded mean oscillations on M . A sharp version of the Sobolev inequality of the Brezis–Gallouet type is introduced on M . A monotonicity formula by the mean oscillation is established and applied for proving such a regularity criterion for weak solutions as above.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00526-008-0166-5</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2008-12, Vol.33 (4), p.391-415
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_miscellaneous_855674787
source SpringerLink Journals
subjects Analysis
Calculus of variations
Calculus of Variations and Optimal Control
Optimization
Control
Criteria
Harmonics
Heat transfer
Heat transmission
Manifolds
Mathematical analysis
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Oscillations
Partial differential equations
Regularity
Systems Theory
Theoretical
title Regularity condition by mean oscillation to a weak solution of the 2-dimensional Harmonic heat flow into sphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularity%20condition%20by%20mean%20oscillation%20to%20a%20weak%20solution%20of%20the%202-dimensional%20Harmonic%20heat%20flow%20into%20sphere&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Misawa,%20Masashi&rft.date=2008-12-01&rft.volume=33&rft.issue=4&rft.spage=391&rft.epage=415&rft.pages=391-415&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-008-0166-5&rft_dat=%3Cproquest_cross%3E855674787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219215480&rft_id=info:pmid/&rfr_iscdi=true