Regularity condition by mean oscillation to a weak solution of the 2-dimensional Harmonic heat flow into sphere

We show a regularity criterion to the harmonic heat flow from 2-dimensional Riemannian manifold M into a sphere. It is shown that a weak solution of the harmonic heat flow from 2-dimensional manifold into a sphere is regular under the criterion where BMO r is the space of bounded mean oscillations o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2008-12, Vol.33 (4), p.391-415
Hauptverfasser: Misawa, Masashi, Ogawa, Takayoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show a regularity criterion to the harmonic heat flow from 2-dimensional Riemannian manifold M into a sphere. It is shown that a weak solution of the harmonic heat flow from 2-dimensional manifold into a sphere is regular under the criterion where BMO r is the space of bounded mean oscillations on M . A sharp version of the Sobolev inequality of the Brezis–Gallouet type is introduced on M . A monotonicity formula by the mean oscillation is established and applied for proving such a regularity criterion for weak solutions as above.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-008-0166-5