Evaluation of the effect of speech-rate slowing on speech intelligibility in noise using a simulation of cochlear hearing loss

The effect of digital processing, which slows the speed of speech (speech-rate) without changing its pitch, has been examined. The processing is intended to make speech communication easier by allowing more time for cognitive processing when the listening situation is difficult, for example, when li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 1998-01, Vol.103 (1), p.572-576
Hauptverfasser: Nejime, Y, Moore, B C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of digital processing, which slows the speed of speech (speech-rate) without changing its pitch, has been examined. The processing is intended to make speech communication easier by allowing more time for cognitive processing when the listening situation is difficult, for example, when listening to a foreign language, or when the user has a hearing loss. The speech-rate slowing makes use of a pitch-synchronous partial expansion of the waveform in the time domain. The processing was evaluated using a simulation of hearing loss which has been shown to lead to reduced intelligibility for normally hearing subjects. The simulation included the major consequences of cochlear hearing loss; loudness recruitment, threshold elevation, and reduced frequency selectivity. Two simulations were used: a moderate flat hearing loss with auditory filters broadened by a constant factor of three (B3R2); and the same loss with linear amplification applied prior to the simulation processing (B3R2+). Two expansion rates were used for the speech-rate slowing, 1.25 and 1.50. The intelligibility of sentences in speech-shaped noise was measured. For both simulation conditions, the speech-rate slowing did not give any improvement in intelligibility. Rather, in condition B3R2+ the slowing produced statistically significant deleterious effects on intelligibility. The results suggest that artificial speech-rate slowing will not improve the intelligibility of speech in noise for hearing-impaired people who have the type of cochlear damage simulated in this test.
ISSN:0001-4966
1520-8524
DOI:10.1121/1.421123