Slow crack growth and reliability of dental ceramics

Abstract Objective To determine the slow crack growth (SCG) and Weibull parameters of five dental ceramics: a vitreous porcelain (V), a leucite-based porcelain (D), a leucite-based glass-ceramic (E1), a lithium disilicate glass-ceramic (E2) and a glass-infiltrated alumina composite (IC). Methods Eig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dental materials 2011-04, Vol.27 (4), p.394-406
Hauptverfasser: Gonzaga, Carla Castiglia, Cesar, Paulo Francisco, Miranda, Walter Gomes, Yoshimura, Humberto Naoyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Objective To determine the slow crack growth (SCG) and Weibull parameters of five dental ceramics: a vitreous porcelain (V), a leucite-based porcelain (D), a leucite-based glass-ceramic (E1), a lithium disilicate glass-ceramic (E2) and a glass-infiltrated alumina composite (IC). Methods Eighty disks (Ø 12 mm × 1.1 mm thick) of each material were constructed according to manufacturers’ recommendations and polished. The stress corrosion susceptibility coefficient ( n ) was obtained by dynamic fatigue test, and specimens were tested in biaxial flexure at five stress rates immersed in artificial saliva at 37 °C. Weibull parameters were calculated for the 30 specimens tested at 1 MPa/s in artificial saliva at 37 °C. The 80 specimens were distributed as follows: 10 for each stress rate (10−2 , 10−1 , 101 , 102 MPa/s), 10 for inert strength (102 MPa/s, silicon oil) and 30 for 100 MPa/s. Fractographic analysis was also performed to investigate the fracture origin. Results E2 showed the lowest slow crack growth susceptibility coefficient (17.2), followed by D (20.4) and V (26.3). E1 and IC presented the highest n values (30.1 and 31.1, respectively). Porcelain V presented the lowest Weibull modulus (5.2). All other materials showed similar Weibull modulus values, ranging from 9.4 to 11.7. Fractographic analysis indicated that for porcelain D, glass-ceramics E1 and E2, and composite IC crack deflection was the main toughening mechanism. Significance This study provides a detailed microstructural and slow crack growth characterization of widely used dental ceramics. This is important from a clinical standpoint to assist the clinician in choosing the best ceramic material for each situation as well as predicting its clinical longevity. It also can be helpful in developing new materials for dental prostheses.
ISSN:0109-5641
1879-0097
DOI:10.1016/j.dental.2010.10.025