Deprotonation of glutamic acid induced by weak magnetic field: An FTIR-ATR study

It has been claimed that weak extremely low frequency electromagnetic fields (ELF‐EMFs) can affect biochemical reactions and a wide‐ranging body of literature is available on this topic. Nevertheless, the physical nature of these effects remains largely unknown. We investigated the influence of ELF‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioelectromagnetics 2011-04, Vol.32 (3), p.218-225
Hauptverfasser: De Ninno, A., Congiu Castellano, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been claimed that weak extremely low frequency electromagnetic fields (ELF‐EMFs) can affect biochemical reactions and a wide‐ranging body of literature is available on this topic. Nevertheless, the physical nature of these effects remains largely unknown. We investigated the influence of ELF‐EMF on glutamic acid solutions using Fourier transform infrared‐attenuated total reflectance (FTIR‐ATR) spectra. Samples were exposed for 10, 20, or 30 min to a weak EMF generated by Helmoltz coils, and then placed in a spectrometer. After exposure, those solutions that had a pH lower than the isoelectric point tended to show a shift toward the deprotonation of the carboxylic group, while solutions having a pH greater than the isoelectric point showed the deprotonation of the residual amine group. Moreover, at low pH values, we also detected a shift of the δantisym band of the amine. The effects lasted a few minutes after exposure before the native configuration was restored. The spectral modifications were observed after each independent exposure to EMFs, and the same effects were seen by varying the frequencies in the range of 0–7 kHz. Therefore, the hypothesis of the existence of a resonant frequency that has been proposed elsewhere cannot be supported by the results of this study. The most surprising characteristic of this effect is the long‐lasting nature of the perturbation, which is hard to be explained in terms of short‐living excitations in biological matter. Bioelectromagnetics 32:218–225, 2011. © 2010 Wiley‐Liss, Inc.
ISSN:0197-8462
1521-186X
DOI:10.1002/bem.20631