Similarity-based word sense disambiguation: Word sense disambiguation
We describe a method for automatic word sense disambiguation using a text corpus and a machine-readble dictionary (MRD). The method is based on word similarity and context similarity measures. Words are considered similar if they appear in similar contexts; contexts are similar if they contain simil...
Gespeichert in:
Veröffentlicht in: | Computational linguistics - Association for Computational Linguistics 1998-03, Vol.24 (1), p.41-59 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | 1 |
container_start_page | 41 |
container_title | Computational linguistics - Association for Computational Linguistics |
container_volume | 24 |
creator | KAROV, Y EDELMAN, S |
description | We describe a method for automatic word sense disambiguation using a text corpus and a machine-readble dictionary (MRD). The method is based on word similarity and context similarity measures. Words are considered similar if they appear in similar contexts; contexts are similar if they contain similar words. The circularity of this definition is resolved by an iterative, converging process, in which the system learns from the corpus a set of typical usages for each of the senses of the polysemous word listed in the MRD. A new instance of a polysemous word is assigned the sense associated with the typical usage most similar to its context. Experiments show that this method can learn even from very sparse training data, achieving over 92% correct disambiguation performance. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_85502470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29441396</sourcerecordid><originalsourceid>FETCH-LOGICAL-p244t-5df8395ab079fc08a2b9014efde414d6a57ce9dba9044ed47efe9c860b9844a23</originalsourceid><addsrcrecordid>eNqFzk1LxDAUheEgCtbR_9CFuBAKN8lNmyxl8AsGXKjrctvcSKRfNi0y_94BZz-rs3k4vGcik0ZD4bRU5yID62ShQFaX4iqlbwCoQFeZuH-Pfexojsu-aCixz3_H2eeJh8S5j4n6Jn6ttMRxuBYXgbrEN8fdiM-nx4_tS7F7e37dPuyKSSEuhfHBameogcqFFiypxoFEDp5Roi_JVC0735ADRPZYcWDX2hIaZxFJ6Y24-_-d5vFn5bTUfUwtdx0NPK6ptsaAwkP-KagcotSuPMDbI6TUUhdmGtqY6mmOPc37WqGxCEb_AY0hWn4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29441396</pqid></control><display><type>article</type><title>Similarity-based word sense disambiguation: Word sense disambiguation</title><source>Alma/SFX Local Collection</source><creator>KAROV, Y ; EDELMAN, S</creator><creatorcontrib>KAROV, Y ; EDELMAN, S</creatorcontrib><description>We describe a method for automatic word sense disambiguation using a text corpus and a machine-readble dictionary (MRD). The method is based on word similarity and context similarity measures. Words are considered similar if they appear in similar contexts; contexts are similar if they contain similar words. The circularity of this definition is resolved by an iterative, converging process, in which the system learns from the corpus a set of typical usages for each of the senses of the polysemous word listed in the MRD. A new instance of a polysemous word is assigned the sense associated with the typical usage most similar to its context. Experiments show that this method can learn even from very sparse training data, achieving over 92% correct disambiguation performance.</description><identifier>ISSN: 0891-2017</identifier><identifier>EISSN: 1530-9312</identifier><identifier>CODEN: AJCLD9</identifier><language>eng</language><publisher>Cambridge, MA: MIT Press</publisher><subject>Applied linguistics ; Computational linguistics ; Linguistics</subject><ispartof>Computational linguistics - Association for Computational Linguistics, 1998-03, Vol.24 (1), p.41-59</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2458405$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KAROV, Y</creatorcontrib><creatorcontrib>EDELMAN, S</creatorcontrib><title>Similarity-based word sense disambiguation: Word sense disambiguation</title><title>Computational linguistics - Association for Computational Linguistics</title><description>We describe a method for automatic word sense disambiguation using a text corpus and a machine-readble dictionary (MRD). The method is based on word similarity and context similarity measures. Words are considered similar if they appear in similar contexts; contexts are similar if they contain similar words. The circularity of this definition is resolved by an iterative, converging process, in which the system learns from the corpus a set of typical usages for each of the senses of the polysemous word listed in the MRD. A new instance of a polysemous word is assigned the sense associated with the typical usage most similar to its context. Experiments show that this method can learn even from very sparse training data, achieving over 92% correct disambiguation performance.</description><subject>Applied linguistics</subject><subject>Computational linguistics</subject><subject>Linguistics</subject><issn>0891-2017</issn><issn>1530-9312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFzk1LxDAUheEgCtbR_9CFuBAKN8lNmyxl8AsGXKjrctvcSKRfNi0y_94BZz-rs3k4vGcik0ZD4bRU5yID62ShQFaX4iqlbwCoQFeZuH-Pfexojsu-aCixz3_H2eeJh8S5j4n6Jn6ttMRxuBYXgbrEN8fdiM-nx4_tS7F7e37dPuyKSSEuhfHBameogcqFFiypxoFEDp5Roi_JVC0735ADRPZYcWDX2hIaZxFJ6Y24-_-d5vFn5bTUfUwtdx0NPK6ptsaAwkP-KagcotSuPMDbI6TUUhdmGtqY6mmOPc37WqGxCEb_AY0hWn4</recordid><startdate>19980301</startdate><enddate>19980301</enddate><creator>KAROV, Y</creator><creator>EDELMAN, S</creator><general>MIT Press</general><scope>IQODW</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7T9</scope></search><sort><creationdate>19980301</creationdate><title>Similarity-based word sense disambiguation</title><author>KAROV, Y ; EDELMAN, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p244t-5df8395ab079fc08a2b9014efde414d6a57ce9dba9044ed47efe9c860b9844a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied linguistics</topic><topic>Computational linguistics</topic><topic>Linguistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KAROV, Y</creatorcontrib><creatorcontrib>EDELMAN, S</creatorcontrib><collection>Pascal-Francis</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><jtitle>Computational linguistics - Association for Computational Linguistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KAROV, Y</au><au>EDELMAN, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Similarity-based word sense disambiguation: Word sense disambiguation</atitle><jtitle>Computational linguistics - Association for Computational Linguistics</jtitle><date>1998-03-01</date><risdate>1998</risdate><volume>24</volume><issue>1</issue><spage>41</spage><epage>59</epage><pages>41-59</pages><issn>0891-2017</issn><eissn>1530-9312</eissn><coden>AJCLD9</coden><abstract>We describe a method for automatic word sense disambiguation using a text corpus and a machine-readble dictionary (MRD). The method is based on word similarity and context similarity measures. Words are considered similar if they appear in similar contexts; contexts are similar if they contain similar words. The circularity of this definition is resolved by an iterative, converging process, in which the system learns from the corpus a set of typical usages for each of the senses of the polysemous word listed in the MRD. A new instance of a polysemous word is assigned the sense associated with the typical usage most similar to its context. Experiments show that this method can learn even from very sparse training data, achieving over 92% correct disambiguation performance.</abstract><cop>Cambridge, MA</cop><pub>MIT Press</pub><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0891-2017 |
ispartof | Computational linguistics - Association for Computational Linguistics, 1998-03, Vol.24 (1), p.41-59 |
issn | 0891-2017 1530-9312 |
language | eng |
recordid | cdi_proquest_miscellaneous_85502470 |
source | Alma/SFX Local Collection |
subjects | Applied linguistics Computational linguistics Linguistics |
title | Similarity-based word sense disambiguation: Word sense disambiguation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Similarity-based%20word%20sense%20disambiguation:%20Word%20sense%20disambiguation&rft.jtitle=Computational%20linguistics%20-%20Association%20for%20Computational%20Linguistics&rft.au=KAROV,%20Y&rft.date=1998-03-01&rft.volume=24&rft.issue=1&rft.spage=41&rft.epage=59&rft.pages=41-59&rft.issn=0891-2017&rft.eissn=1530-9312&rft.coden=AJCLD9&rft_id=info:doi/&rft_dat=%3Cproquest_pasca%3E29441396%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29441396&rft_id=info:pmid/&rfr_iscdi=true |