Similarity-based word sense disambiguation: Word sense disambiguation

We describe a method for automatic word sense disambiguation using a text corpus and a machine-readble dictionary (MRD). The method is based on word similarity and context similarity measures. Words are considered similar if they appear in similar contexts; contexts are similar if they contain simil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational linguistics - Association for Computational Linguistics 1998-03, Vol.24 (1), p.41-59
Hauptverfasser: KAROV, Y, EDELMAN, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a method for automatic word sense disambiguation using a text corpus and a machine-readble dictionary (MRD). The method is based on word similarity and context similarity measures. Words are considered similar if they appear in similar contexts; contexts are similar if they contain similar words. The circularity of this definition is resolved by an iterative, converging process, in which the system learns from the corpus a set of typical usages for each of the senses of the polysemous word listed in the MRD. A new instance of a polysemous word is assigned the sense associated with the typical usage most similar to its context. Experiments show that this method can learn even from very sparse training data, achieving over 92% correct disambiguation performance.
ISSN:0891-2017
1530-9312