Use of stem cells cultured ex vivo for ocular surface reconstruction

Lesions on the ocular surface can destroy the stem cells from the limbus and cause limbal stem cell deficiency. The limbal stem cell deficiency is marked by conjunctivalization, which can be defined as the invasion of conjunctival epithelium over the cornea. This process is accompanied by varying de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arquivos brasileiros de oftalmologia 2010-11, Vol.73 (6), p.541-547
Hauptverfasser: Ricardo, José Reinaldo da Silva, Gomes, José Alvaro Pereira
Format: Artikel
Sprache:por
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lesions on the ocular surface can destroy the stem cells from the limbus and cause limbal stem cell deficiency. The limbal stem cell deficiency is marked by conjunctivalization, which can be defined as the invasion of conjunctival epithelium over the cornea. This process is accompanied by varying degrees of corneal changes such as neovascularization, inflammation, recurrent erosions, persistent epithelial defects, destruction of basement membrane of epithelium and stromal healing. Often, these changes are associated with poor visual acuity, photophobia and ocular discomfort. The best treatment for this disease is not known and varies in unilateral or bilateral cases. Among the treatments available, transplantation of limbal autograft or allograft is one of the most used. To improve the outcome of allotransplantation, some researchers use the transplantation of corneal epithelium cultured in the laboratory by ex vivo expansion of limbal stem cells, but due to limited availability of autologous tissue from the limbus and the risk of complications associated with immunosuppression in allogeneic tissue transplantation, researches of others options of stem cell cultured ex vivo have been described in experimental and clinical stage. This review describes the new types of stem cells cultured ex vivo, their current results and future potential.
ISSN:1678-2925
DOI:10.1590/S0004-27492010000600017