High-frequency climatic oscillations recorded in a Holocene coral reef at Leizhou Peninsula, South China Sea

A detailed study of the Goniopora reef profile at Dengloujiao, Xuwen County, Leizhou Peninsula, the northern coast of the South China Sea suggests that a series of high-frequency, large-amplitude and abrupt cold events occurred during the Holocene Hypsithermal, an unusual phenomenon termed "Lei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Earth sciences 2002-12, Vol.45 (12), p.1057-1067
Hauptverfasser: Yu, Kefu, Liu, Dongsheng, Shen, Chengde, Zhao, Jianxin, Chen, Tegu, Zhong, Jinliang, Zhao, Huanting, Song, Chaojing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A detailed study of the Goniopora reef profile at Dengloujiao, Xuwen County, Leizhou Peninsula, the northern coast of the South China Sea suggests that a series of high-frequency, large-amplitude and abrupt cold events occurred during the Holocene Hypsithermal, an unusual phenomenon termed "Leizhou Events" in this paper. This period (corresponding to 14C age of 6.2-6.7 kaBP or calendar age of 6.7-7.2 kaBP), when the climatic conditions were ideal for coral reefs to develop, can be divided into at least nine stages. Each stage (or called a "climate optimum"), lasting about 20 to 50 a, was terminated by an abrupt cold nap and (or) a sea-level lowering event in winter, leading to widespread emergence and death of the Goniopora corals, and growth discontinuities on the coral surface. Such a cyclic process resulted in the creation of a >4m thick Goniopora reef flat. During this period, the crust subsided periodically but the sea level was rising.The reef profile provides valuable archives for the study of decadal-scale mid-Holocene climatic oscillations in the tropical area of South China. Our results provide new evidence for high-frequency climate instability in the Holocene Hypsithermal, and challenge the traditional understanding of Holocene climate.
ISSN:1674-7313
1006-9313
1869-1897
1862-2801
DOI:10.1360/02yd9103