Manganese-enhanced magnetic resonance imaging (MEMRI) of rat brain after systemic administration of MnCl2: Hippocampal signal enhancement without disruption of hippocampus-dependent behavior
Manganese (Mn(2+))-enhanced magnetic resonance (MR) imaging (MEMRI) in rodents offers unique opportunities for the longitudinal study of hippocampal structure and function in parallel with cognitive testing. However, Mn(2+) is a potent toxin and there is evidence that it can interfere with neuronal...
Gespeichert in:
Veröffentlicht in: | Behavioural brain research 2011, Vol.216 (1), p.293-300 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Manganese (Mn(2+))-enhanced magnetic resonance (MR) imaging (MEMRI) in rodents offers unique opportunities for the longitudinal study of hippocampal structure and function in parallel with cognitive testing. However, Mn(2+) is a potent toxin and there is evidence that it can interfere with neuronal function. Thus, apart from causing adverse peripheral side effects, Mn(2+) may disrupt the function of brain areas where it accumulates to produce signal enhancement and, thereby, Mn(2+) administration may confound cognitive testing. Here, we examined in male adult Lister hooded rats if a moderate systemic dose of MnCl₂ (200 μmol/kg; two intraperitoneal injections of 100 μmol/kg separated by 1 h) that produces hippocampal MR signal enhancement would disrupt hippocampal function. To this end, we used a delayed-matching-to-place (DMP) watermaze task, which requires rapid allocentric place learning and is highly sensitive to interference with hippocampal function. Tested on the DMP task 1 h and 24 h after MnCl₂ injection, rats did not show any impairment in indices of memory performance (latencies, search preference) or any sensorimotor effects. However, MnCl₂ injection caused acute peripheral effects (severe ataxia and erythema, i.e. redness of paws, ears, and nose) which subsided over 30 min. Additionally, rats injected with MnCl₂ showed reduced weight 1 day after injection and failed to reach the normal weight-growth curve of control rats within the 16 days monitored. Our results indicate that 200 μmol/kg MnCl₂ produces hippocampal MR signal enhancement without disrupting hippocampus-dependent behavior on a rapid place learning task, even though attention must be paid to peripheral side effects. |
---|---|
ISSN: | 0166-4328 1872-7549 |
DOI: | 10.1016/j.bbr.2010.08.007 |