Physiological aspects involved in production of xylanolytic enzymes by deep-sea hyperthermophilic archaeon Pyrodictium abyssi

Xylanases (EC 3.2.1.8) catalyze the hydrolysis of xylan, the major constituent of hemicellulose. The use of these enzymes could greatly improve the overall economics of processing lignocellulosic materials for the generation of liquid fuels and chemicals. The hyperthermophilic archaeon Pyrodictium a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied biochemistry and biotechnology 2001, Vol.91-93 (1-9), p.655-669
Hauptverfasser: CARVALHO ANDRADE, Carolina M. M, AGUIAR, Wilson Bucker, ANTRANIKIAN, Garo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Xylanases (EC 3.2.1.8) catalyze the hydrolysis of xylan, the major constituent of hemicellulose. The use of these enzymes could greatly improve the overall economics of processing lignocellulosic materials for the generation of liquid fuels and chemicals. The hyperthermophilic archaeon Pyrodictium abyssi, which was originally isolated from marine hot abyssal sites, grows optimally at 97 degrees C and is a prospective source of highly thermostable xylanase. Its endoxylanase was shown to be highly thermostable (over 100 min at 105 degrees C) and active even at 110 degrees C. The growth of the deep-sea archaeon P. abyssi was investigated using different culture techniques. Among the carbohydrates used, beech wood xylan, birch wood glucuronoxylan and the arabinoxylan from oats pelt appeared to be good inducers for endoxylanase and beta-xylosidase production. The highest production of arabinofuranosidase, however, was detected in the cell extracts after growth on xylose and pyruvate, indicating that the intermediate of the tricarboxylic acid cycle acted as a nonrepressing carbon source for the production of this enzyme. Electron microscopic studies did not show a significant difference in the cell surface (e.g., xylanosomes) when P. abyssi cells were grown on different carbohydrates. The main kinetic parameters of the organism have been determined. The cell yield was shown to be very low owing to incomplete substrate utilization, but a very high maximal specific growth rate was determined (micromax = 0.0195) at 90 degrees C and pH 6.0. We also give information on the problems that arise during the fermentation of this hyperthermophilic archaeon at elevated temperatures.
ISSN:0273-2289
1559-0291
0273-2289
DOI:10.1385/ABAB:91-93:1-9:655