A comparison of methods for estimating the random effects distribution of a linear mixed model

This article reviews various recently suggested approaches to estimate the random effects distribution in a linear mixed model, i.e. (1) the smoothing by roughening approach of Shen and Louis,1 (2) the semi-non-parametric approach of Zhang and Davidian,2 (3) the heterogeneity model of Verbeke and Le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods in medical research 2010-12, Vol.19 (6), p.575-600
Hauptverfasser: Ghidey, Wendimagegn, Lesaffre, Emmanuel, Verbeke, Geert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article reviews various recently suggested approaches to estimate the random effects distribution in a linear mixed model, i.e. (1) the smoothing by roughening approach of Shen and Louis,1 (2) the semi-non-parametric approach of Zhang and Davidian,2 (3) the heterogeneity model of Verbeke and Lesaffre 3 and (4) a flexible approach of Ghidey et al. 4 These four approaches are compared via an extensive simulation study. We conclude that for the considered cases, the approach of Ghidey et al. 4 often shows to have the smallest integrated mean squared error for estimating the random effects distribution. An analysis of a longitudinal dental data set illustrates the performance of the methods in a practical example.
ISSN:0962-2802
1477-0334
DOI:10.1177/0962280208091686