Laser Thinning for Monolayer Graphene Formation: Heat Sink and Interference Effect

Despite the availability of large-area graphene synthesized by chemical vapor deposition (CVD), the control of a uniform monolayer graphene remained challenging. Here, we report a method of acquiring monolayer graphene by laser irradiation. The accumulation of heat on graphene by absorbing light, fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2011-01, Vol.5 (1), p.263-268
Hauptverfasser: Han, Gang Hee, Chae, Seung Jin, Kim, Eun Sung, Güneş, Fethullah, Lee, Il Ha, Lee, Sang Won, Lee, Si Young, Lim, Seong Chu, Jeong, Hae Kyung, Jeong, Mun Seok, Lee, Young Hee
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite the availability of large-area graphene synthesized by chemical vapor deposition (CVD), the control of a uniform monolayer graphene remained challenging. Here, we report a method of acquiring monolayer graphene by laser irradiation. The accumulation of heat on graphene by absorbing light, followed by oxidative burning of upper graphene layers, which strongly relies on the wavelength of light and optical parameters of the substrate, was in situ measured by the G-band shift in Raman spectroscopy. The substrate plays a crucial role as a heat sink for the bottom monolayer graphene, resulting in no burning or etching. Oscillatory thinning behavior dependent on the substrate oxide thickness was evaluated by adopting a simple Fresnel’s equation. This paves the way for future research in utilizing monolayer graphene for high-speed electronic devices.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn1026438